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De novo peptide sequencing has improved remarkably in the past decade as a result of better
instruments and computational algorithms. However, de novo sequencing can correctly interpret only
∼30% of high- and medium-quality spectra generated by collision-induced dissociation (CID), which is
much less than database search. This is mainly due to incomplete fragmentation and overlap of different
ion series in CID spectra. In this study, we show that higher-energy collisional dissociation (HCD) is of
great help to de novo sequencing because it produces high mass accuracy tandem mass spectrometry
(MS/MS) spectra without the low-mass cutoff associated with CID in ion trap instruments. Besides,
abundant internal and immonium ions in the HCD spectra can help differentiate similar peptide
sequences. Taking advantage of these characteristics, we developed an algorithm called pNovo for
efficient de novo sequencing of peptides from HCD spectra. pNovo gave correct identifications to 80%
or more of the HCD spectra identified by database search. The number of correct full-length peptides
sequenced by pNovo is comparable with that obtained by database search. A distinct advantage of de
novo sequencing is that deamidated peptides and peptides with amino acid mutations can be identified
efficiently without extra cost in computation. In summary, implementation of the HCD characteristics
makes pNovo an excellent tool for de novo peptide sequencing from HCD spectra.
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1. Introduction

Both database search and de novo peptide sequencing can
be used for protein identification. Thanks to the fast develop-
ment of protein databases, such as IPI, Swiss-Prot, and RefSeq
(reviewed in ref 1), database search has long been the dominant
approach. A large number of database search algorithms and
software tools are used in routine experiments, for example,
Mascot,2 SEQUEST,3 X! Tandem,4,5 pFind,6–8 Phenyx,9,10 and
OMSSA.11 Generally speaking, the essence of these methods is
retrieving all candidate peptides from a specified database for
each spectrum, followed by scoring of each peptide-spectrum
match (PSM).12 Only the precursor ion mass of each experi-
mental spectrum is used to prune invalid peptides from the
database, although detailed information in each spectrum such
as the charge and m/z of fragment ion peaks could be used,
too, to further filter invalid peptides from the database. As such,
a spectrum may be matched with a huge number of peptides
and it may be difficult to retrieve the correct interpretation
efficiently and accurately. This situation is exacerbated if

multiple post-translational modifications (PTMs) are searched
for simultaneously, because the number of candidate peptides
will increase exponentially and it will take a long time to score
each spectrum against all candidates.13 On the other hand, if
the corresponding sequence of a given spectrum is not in the
database, then the spectrum cannot be identified regardless
of its quality.

An alternative approach is de novo peptide sequencing,
which extracts a peptide sequence directly from a spectrum
and hence does not require any protein database. De novo
peptide sequencing is essential if there is no protein database
available for a sample of interest.12 Another potential advantage
of de novo sequencing is to discover mutations and modifica-
tions, including unexpected or unknown ones. Multiple de novo
peptide sequencing algorithms have been reported in recent
years, such as PepNovo,14 PEAKS,15 SHERENGA,13 Lutefisk,16

AuDeNs,17 MSNovo,18 SeqMS,19,20 PFIA,21 and NovoHMM.22

Most of them use spectrum graph or a similar approach, in
which each original spectrum is transformed into a directed
acyclic graph and the optimal paths are found via dynamic
programming algorithms.13,23–25

Thanks to the advancement of the mass spectrometry
technology, especially the emergence of new fragmentation
techniques, for example, higher-energy collisional dissociation
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(HCD, also called higher-energy C-trap dissociation in earlier
orbitrap instruments), electron capture dissociation (ECD), or
electron transfer dissociation (ETD), and reduced cost and
maintenance burden of high-precision mass spectrometers,
novel computational methods are investigated to improve de
novo peptide sequencing. Frank et al. proposed that precision
mass spectrometry, available with Q-TOF, FT-ICR, and Orbi-
trap, can remarkably increase the ratio of identified amino acids
and correct peptides.26 Savitski et al. also presented strong
evidence that mass accuracy plays an extremely important role
in peptide sequencing.27 Spengler proposed a strategy based
on analysis of amino acid composition and high mass accuracy
to reduce the possible combinations of amino acids.28 Generally
speaking, precision mass spectrometry decreases the complex-
ity of common de novo sequencing algorithms by restricting
the occurrence of random matches. Novel fragmentation
methods complementary to the traditional collision-activated
dissociation or collision-induced dissociation (CAD or CID) are
also helpful to de novo sequencing. For instance, CID and ETD
(or ECD) spectra belonging to the same precursor can be paired
up to obtain more fragmentation information.29 Horn et al.
described an algorithm to distinguish N- and C-terminal
fragments using CID and ECD spectra.30 Savitski et al. devel-
oped a similar but more hierarchically structured method and
used it in a proteomics-scale data analysis.27 Datta and Bern
proposed an algorithm to transform the information in each
CID-ETD spectral pair into a higher-quality integrated spectrum
using a Bayesian network.31

Although development of mass spectrometry instruments
and computation has improved spectral interpretation, de novo
peptide sequencing is still far from being a mature method.
Compared with database search, de novo peptide sequencing
usually yields less accurate identifications. A comparative study
showed that while more that 60% of the amino acid residues
can be predicted by the most powerful software tools, only less
than 30% of peptides can be correctly identified from the test
data.32 Another study examining several de novo sequencing
algorithms found that no more than 50% of the peptide
identifications were exactly right, no matter which algorithm
was used to generate them.33 Generally speaking, the perfor-
mance of de novo sequencing algorithms deteriorates rapidly
when longer sequences are required.34 As such, de novo peptide
sequencing is scarcely used in routine experiments. In most
cases, de novo peptide sequencing is integrated with database
search. With this hybrid approach, short and relatively reliable
sequence tags or full-length de novo reconstructions are
generated first, and then these sequences are used to filter
candidate peptides in the database.35–40 De novo sequencing
of full-length peptides remains an immense challenge.

To conquer the difficulties described above and obtain more
reliable results by de novo sequencing, a feasible approach is
to utilize spectra containing peptide fragmentation information
as complete as possible. Olsen et al. suggested that HCD spectra
could facilitate de novo sequencing.41 Here we find that HCD
is indeed an excellent choice for de novo sequencing. In our
data, around 48.6% of the HCD spectra that are reliably
identified by database search contain full cleavage information
of peptides, that is, all peptide-bond cleavages along a peptide
backbone are represented by observed fragment ions. The
spectra with only one missing cleavage account for another
31.2%. So together, 79.8% of the HCD spectra contain full or
almost full cleavage information, substantially higher than that
of CID (62.8%) or ETD (65.03%) spectra. Besides high mass

accuracy of fragment ions and nearly complete ion series, the
presence of many immonium ions and internal fragment ions
in HCD spectra also improves de novo sequencing because it
can be used to distinguish between similar candidate pep-
tides.42 We find that over 50% of dipeptide ions, as well as about
40% of tri- and tetra- peptide ions, are present in the HCD
spectra. For some amino acids that are prone to produce
immonium ions, such as Cys, Tyr, Trp, His, and Phe, their
immonium ion peaks can be observed with a probability of
over 95%. Other amino acids, such as Glu, Val, and Ile/Leu,
also give a probability of 50-80% for the detection of their
immonium ions. The internal and immonium ions can help
distinguish between sequences with slight differences, so a
more effective de novo peptide sequencing algorithm can be
hoped for.

In this paper, we present an automated de novo algorithm,
pNovo, which takes the characteristics of HCD spectra into full
consideration. The average accuracy of pNovo results is ∼96.2%
for amino acid residues. From the test HCD spectra with
reliable sequence identifications assigned by database search,
pNovo obtained correct full-length sequences for at least 80%
of them. The basic approach is similar to a spectrum graph
but differs from it in some important details of realization, such
as the application of low mass ions (below 500 Da) and careful
consideration of mass accuracy. A novel scoring scheme has
been developed to distinguish between similar peptides with
minute differences. Spectra of highly charged peptides can also
be handled efficiently by pNovo.

2. Algorithms

Data Preprocessing. The preprocessing consists of four
steps. In Step 1, the charge state of each peak is determined
by its isotopic peak cluster. HCD spectra are of high resolution,
so doubly and triply charged ion peaks can be identified
correctly (Figure 1a). If a peak cannot be assigned to an isotopic
cluster, it is then treated as a singly charged ion. In Step 2, all
absolute peak intensities are transformed into relative ranks.
The reason is that some extremely strong peaks could be
interpreted incorrectly as fragment ions that differ from other
fragment ions by a certain amino acid(s), bringing in inaccurate
results.26 Therefore, the ranks are computed to smooth the
intensity variation among different peaks. In Step 3, immonium
ions are removed because some amino acids such as Cys, Phe,
Ile/Leu, Tyr, and Trp tend to produce abundant immonium
ions via HCD (Figure 1b). If these immonium ions are kept,
the N- and C-terminal regions of the spectrum graph may
become too complex. In the final step, K most intense peaks
are picked out in each spectrum for the construction of a
spectrum graph.

Constructing a Spectrum Graph. To select appropriate ion
types used in the algorithm and learn the relationship between
them, we used the offset frequency function (OFF), reported by
Dančik et al.13 Suppose a spectrum S consists of m observed
peaks from s1 to sm, and the prefix residue masses of the
ground-truth peptide is represented by p1, p2,.. ., pn. Then the
OFF is computed as follows. For every si and pj, we calculate
their distance δ with the accuracy of two decimal places, and
plot the occurrence of different δ values. The suffix OFF is
computed in a similar way. Finally, we let pNovo consider the
six most abundant types of fragment ions, y+, b+, y+-NH3, y+-
H2O, a+ and y2+ (Figure S1 in the Supporting Information shows
the prefix and suffix OFFs).
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The construction procedure of a spectrum graph is as
follows: in the first step, each peak is split into k vertexes in
general cases, where k is the number of the selected ion types
(k ) 6 in this paper, for y+, b+, y+-NH3, y+-H2O, a+, and y2+

ions). For instance, if there is a peak located at m/z 796.54 in
a spectrum whose MH+ is 1387.76 Da, and the possibilities of
both b- and y- ions are taken into consideration, then two
vertexes, located at m/z 795.54 and m/z 591.22, are generated
respectively. For convenience, we also call these m/z values
the “masses” of the vertexes. The weight of each vertex is the
intensity of its corresponding peak. For each peak, one or more
of the k vertexes may not be generated in the algorithm. For
example, the appearance of the y-H2O-ions depends on the
appearance of their cognate y-ions, and a-ions are often
gathered in the low and medium mass region of a spectrum.
As a result, only if a peak is associated with a probability greater
than 0.1 as an assumed ion type, the vertex can be generated
accordingly (the fragment ion frequencies are shown in Table

1). A conditional probability greater than 0.8 for each derived
ion type is also necessary, as described in Table S1 (Supporting
Information).

Figure 1. (a) High mass accuracy is of great help to determine the charge states of peaks in HCD MS/MS spectra. The monoisotopic
peak p1 located at m/z of 789.4269 is doubly charged, and the average distance between two adjacent peaks in the isotopic cluster is
0.505 m/z. The monoisotopic peak p2 at m/z of 801.0531 is triply charged, for its isotopic peaks are spaced 0.3353 m/z apart. The
average deviation associated with the isotopic peak spacing is 0.00665 Da for the former and 0.00255 Da for the latter. (b) HCD MS/MS
spectra are rich in information of immonium ions. The peptide LSGQTIEVTSEYLFR is assigned to this spectrum by pFind with an
e-value of 1.13 × 10-5. Present in the spectrum are all the immonium ions of amino acids found in this peptide except for Gly (the
immonium ion of Gly is below the scan range) and Arg (the immonium ion of Arg is always very weak or absent42).

Table 1. Information of Different Ion Types Learned from the
Offset Frequency Function (OFF)

ion offset prefix/suffix mass deviation frequencya

y 19.0158 suffix -0.0021 0.668
b 1.0065 prefix -0.0009 0.286
y-NH3 1.9903 suffix -0.0009 0.177
y-H2O 1.0065 suffix -0.0008 0.155
a -26.9885 prefix 0.0009 0.200
b-H2O -17.0044 prefix 0.0011 0.121
y2+ 10.0102 suffix -0.0024 0.100b

a Frequency of each ion type is calculated as no. observed ions/no.
total ions in the scanned mass range. b Although y2+ ions appear as a
lower frequency, we also choose to consider it for constructing spectrum
graph because in triply charged spectra, 38.8% of y2+ ions can be
observed.
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In the second step, if two or more vertexes are of equal mass
within a tolerance range, then a merging algorithm is used to
integrate them together. Adapted from a reported algorithm,13

the weight of each merged vertex is assigned the sum of the
weight of each component vertex.

In the third step, we add special vertexes, including the
source and target vertexes with the mass of 0 and M - 18,
respectively, where M denotes the peptide mass, and some
characteristic vertexes as appropriate for enzyme specificity.
For example, if trypsin is used in the experiment to digest
proteins, two vertexes, with the mass of M - 128.09 and M
- 156.10, respectively, should be added. After that, pNovo
connects two vertexes if and only if their distance in mass
is equal to the sum of one or more residue masses within a
tolerance range. Note that there may be some edges with
more than one amino acid residue combination. For in-
stance, the mass of the sum of Ser and Leu is equal to that

of Thr and Val. Then all combinations are recorded for
further generation of candidate peptides. The weight of each
edge is computed by adding the weights of the two corre-
sponding vertexes.

In the last and most important step, we reassign the
weights of the edges with considerations of mass accuracy
and observed internal and immonium ions. As shown in
Figure 2a, although the maximum mass deviation of HCD
spectra is usually (0.01 Da, over 70% of the edges in the
spectrum graph are within a much narrower tolerance
window, from -0.001 to 0.001 Da. Therefore, the weight of
each edge should be multiplied by a penalty factor correlated
with mass deviation. Suppose e stands for an edge, v and v′
for the corresponding vertexes of e, tol for the narrower
tolerance and δ for the mass deviation of e, the following
functions are used to recalculate the weight of e:

Figure 2. (a) Distribution of mass deviations for the number of edges in all the optimal paths in the spectrum graphs. The range
is from -0.001 to 0.01 Da, in which 2 056 391 different mass deviations of edges are counted in the histogram. Of these, 1 455 036
deviations (70.9% of the total), are in the range from -0.001 to 0.001 Da. (b) Curve of the penalty function used in the scoring
scheme of pNovo.
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In the functions above, weight(v) denotes the weight of the
vertex v, that is, the accumulative intensity of all of its
corresponding edges.

The curve of the penalty function is shown in Figure 2b.
Immonium and internal ions are also used to adjust the

weights of the edges. As a preliminary task, all theoretical
internal ions below 500 Da, including both ay- and by- ion
types,42 are enumerated first. Because the masses of all internal
ions could be precalculated and indexed, the internal ions that
appear in the spectra could be retrieved with a linear time
complexity. Then all edges are tested whether to reassign their
weights. If there is an edge e′ (to be more accurate, it comes
from only the N-terminal fragment ions) starting from the
source vertex whose mass distance equals to the mass of an
immonium or internal ion present in the spectrum, the weight
of e increases with the intensity of the corresponding immo-
nium or internal ion peak pe′, multiplied by the penalty
function.

Lastly, the weight of an edge is calculated using the following
formula, where Int(pe′) denotes the intensity of pe′:

Generating Candidate Peptides. After a spectrum graph is
constructed, the state-of-the-art algorithms in the graph theory
can be used to generate optimal paths. The score of each path
is defined as the sum of the weight of each edge in the path.
Like other de novo sequencing algorithms, only antisymmetric
paths are generated in our algorithm;13 however, unlike the
traditional dynamic programming approach, a depth-first
search (DFS) with an efficient pruning strategy, is used. The
pruning strategy is described as follows. First, we define
Best_Score of a vertex as the expected highest score from this
vertex to the target vertex. The Best_Score of each vertex can
be computed using the backward dynamic programming
approach:

After the computation of the Best Score of each vertex, all
optimal paths can be retrieved from the spectrum graph using
a DFS algorithm. For instance, if only one path is to be retrieved
from a spectrum graph, we assume that only the topmost path
with the highest score is to be found. In the DFS algorithm,
we define Pre Score of a vertex as the score of the path from
the source to itself, that is, the sum of the weight of each edge
from the source to this vertex. If a path is found from the source
vertex to the target vertex and its score is the highest of all the
paths found up to this point, then this path as well as its score
is recorded. For an arbitrary vertex v which follows vertex w
on the spectrum graph, we require that the sum of Pre Score(v)
and Best Score(v) must be greater than the recorded highest
score, so that a path with a potentially higher score could be
found; otherwise the algorithm will trace back to w, and
another vertex which follows w on the spectrum graph and to

which there is an edge extending from w will be considered.
Similarly, the second, third, fourth. .. and nth best path can be
retrieved from each spectrum graph. In our study the DFS
algorithm together with the pruning strategy is more time-
efficient than other approaches we investigated. This approach
also fits other additive scoring schemes and could be easily
extended to finding top-k paths.

Finally, peptide candidates are generated using all of the
retrieved optimal paths. As mentioned above, there may be
some edges that are marked by different combinations of
amino acids with the same mass. In this step, all possible
peptides in the optimal paths are enumerated and then
matched with the spectrum.

Scoring Candidate Peptides. Designing a good scoring
scheme is of prime importance in both database search and
de novo peptide sequencing. In conventional approaches, dot
product and probability-based approaches are most widely
used. However, candidate peptide sequences interpreted from
the same spectrum always bear a high degree of similarity with
each other; hence, the aforementioned approaches may be
unable to distinguish them if only a few conditions are
considered. This situation is especially troublesome in de novo
peptide sequencing, for the candidate peptides are from the
“theoretical database” that contains all possible sequences.
Additional information is needed to effectively discriminate
slight differences between peptide sequences. Fortunately, high
mass accuracy and ample information of immonium and
internal ions in HCD spectra provide such help. In this section,
we choose several key features to construct a PSM scoring
scheme. First, it is known that the percentage of the matched
high-intensity peaks properly reflects the quality of the PSM.
This feature is also used in machine learning,43,44 but in our
algorithm we consider more ion types including internal ions
and some backbone-derived ions with neutral losses. Assuming
that all peaks p1, p2, p3.. ., pm in a spectrum S are sorted by
their intensities from the strongest to the weakest and the
weakest peak matching a fragment ion of peptide P is pk, 1 e
k e m, we calculate SH as below:

Second, the cleavage information is also utilized in the
scoring step. In general, a peptide tends to be a reliable
candidate if it has many fragmentation sites supported by the
spectrum and if it has a long consecutive sequence tag. Let cf

denote the total count of observed cleavage signals of P in the
spectrum S and tf denote the length of the longest sequence
tags, then we calculate SF to evaluate the fragmentation of the
peptide P in the spectrum S:

Third, mass deviation is also useful to differentiate two
peptide sequences that resemble each other. Suppose that T
is the specified maximum mass deviation and md is the
function for computing the mass deviation between an ob-

Penalty(δ, tol) ) {-log(abs(δ)) if δ g tol
-log(abs(tol)) otherwise

Weight(δe, tol) ) Penalty(δe, tol) × (weight(v) + weight(v′))

Weight(δe, δe′, tol) ) Penalty(δe, tol) × (weight(v) +

weight(v′)) + Penalty(δe′, tol) × Int(pe′))

Best Score(v) ) max{Best Score(v′) +
weight(ev,v′), if there is an edge from v to v′}

match(p) ) {1 if p matches with a fragment ion
0 otherwise

SH(S, P) ) 1
k ∑

i)1

k
1
i ∑

j)1

i

match(pj)

SF(S, P) )
√cf · tf

length(P) - 1
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served peak p and its corresponding ion, we compute the value
of SMD as follows:

Finally, the C-Score of a peptide-spectrum match is defined
as the geometric mean of the SH, SF and SMD, multiplied by SO,
which is the normalized score of the path from which the
peptide is generated:

3. Experiments and Results

Materials and MS/MS Data. Two kinds of biological samples
were used, one simple and the other complex. The simple one
was a mixture of Bio-Rad unstained low- and high-range
protein standards (called 8-protein STD) consisting of Myosin,
Glycogen phosphorylase, Serum albumin, Beta-galactosidase,
Carbonicanhydrase,Trypsininhibitor,Ovalbumin,andLysozyme.
This 8-protein mixture was digested with trypsin and analyzed
by LC-MS/MS on a LTQ-Orbitrap mass spectrometer equipped
with ETD (Thermo-Fisher Scientific). A C18 reverse-phase
column (100 µm ID and 8 cm in length) connected to an Agilent
1200 quaternary HPLC was used to separate peptides. MS/MS
spectra were acquired in a data-dependent acquisition mode.
Full scans were acquired in the Orbitrap and the two most
intense precursor ions from each full scan were isolated to
generate five MS/MS spectra for each. The five MS/MS events
are low-mass HCD (mass range 50-2000), HCD (mass range
100-2000), CID detected in LTQ, ETD detected in orbitrap, and
ETD detected in LTQ. Only the HCD data were used in de novo
analysis. Two HCD MS/MS spectra are necessary to cover the
mass range from 50 to 2000 because low-mass HCD spectra
(50-2000 m/z) are almost devoid of fragment ions above 1000
m/z. All tandem mass spectra were extracted by Xcalibur 2.0.7
as RAW files. The .ms2 file containing MS/MS spectra was
generated by RawXtract 1.9.3. Then different types of MS/MS
spectrawereseparatedbyanin-housesoftwaretoolMS2Extractor.
Each pair of HCD spectra were integrated into a single
spectrum by gathering all the peaks in the two spectra and
merging peaks with identical m/z values within a tolerance
window of (0.01 Da. The intensity of the peaks that are merged
together are summed up and given to the resultant peak.

The other sample was a tryptic digest of a whole-cell lysate
of C. elegans. This extremely complex mixture (40 µg) was
analyzed on a LTQ-Orbitrap mass spectrometer using a 12-
step MudPIT method similar to what had been described
before.45 Briefly, a 250 µm (ID) × 2 cm (length) desalting
column was packed with 5 µm, 125 anstrong Aqua C18 resin
(Phenomenex). The analytical reverse phase column was 100
µm (ID) × 9 cm (length) with a pulled tip, packed with 3 µm,
125 anstrong Aqua C18 resin (Phenomenex). Between the
desalting column and the analytical column is a strong cation
exchange column (SCX), 250 µm (ID) by 2 cm (length),
containing 5 µm, 120 anstrong Partisphere SCX material
(Whatman). The salt pulses of these 9-step MudPIT experi-
ments were set at 0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, and
100, expressed as the percentage of buffer C. In the MudPIT
experiment, the five most intense precursor ions from each full

scan were isolated to generate three MS/MS spectra for each:
low-mass HCD (mass range 50-2000), HCD (mass range
100-2000), and CID (detected in LTQ). Only the HCD data were
used in de novo analysis. Three of the 12 RAW files were used
for the performance test of pNovo and the remaining 9 files
served as a training set to determine the ion types present in
HCD spectra.

Database Search and Data Sets. Two database search
software tools, Mascot v2.1.03 and pFind v2.1, were used in
this paper to generate the test data sets and compared with
pNovo. The protein sequence database and parameters used
in database search are listed in the Supporting Information.

Three test data sets and one training set were used in this
work. The first two, STD-951 and STD-208, were from the
analysis of the 8-protein sample and the rest were from the
MudPIT analysis of the C. elegans lysate.

STD-951: A total of 951 spectra were extracted directly from
the original RAW file without any special filtering. Two con-
secutive HCD spectra from the same precursor were merged
together.

STD-208: This data set contains 208 HCD spectra for which
pFind and Mascot agree completely on their sequence identities
under the 1% FDR control at the spectrum level, of which 197
are doubly charged peptides, and the rest triply charged. In
short, STD-951 is the original data generated from the “8-
protein STD” sample, and STD-208 is a subset of STD-951 with
reliable database identification results.

WORM-767: This data set contains 767 HCD spectra. A total
of 1214 HCD spectra were identified from the three RAW files
by Mascot and pFind with identical results under 1% FDR. After
removing duplicate peptides, we retained 767 HCD spectra. Out
of the 767 peptides, 58 were triply charged, and the rest doubly
charged.

Training set: As mentioned before, the remaining nine RAW
files out of a total of 12 from the worm sample were used for
training. This data set contained 4718 spectra that were
identified by both Mascot and pFind with identical results
under 1% FDR.

De novo Peptide Sequencing and Protein Identification.
The pNovo algorithm was tested on three data sets described
above. Of the 20 standard amino acids and their combinations,
only Leu and Ile are considered as the same. In preprocessing,
150 most intense peaks in each spectrum are kept for later
steps. To compute C-Score, the original spectrum with all the
peaks, rather than the top 150, is used because some low
intensity internal ions could provide extra information to
distinguish between similar sequences. When the algorithm
constructs the spectrum graph, it uses a tolerance window of
(0.01 Da to determine whether or not to connect an edge
between two vertexes. However, a narrower tolerance window
of (0.001 Da is used in the penalty function. No more than
100 paths are generated from the spectrum graph to balance
the speed and the accuracy of the algorithm.

We chose the Levenshtein distance46 with two extensions33

to measure the similarity between the answer (from the
database search) and the pNovo sequencing result. Similarity
ratio is defined by the following formula (the function LD
denotes the extended Levenshtein distance between two pep-
tide sequences):

SMD(S, P) ) (T - � ∑
Kmost intense peaks p

md2(p)

K
)/T

C-Score(S, P) ) √
3

SH(S, P) × SF(S, P) × SMD(S, P) × SO
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For instance, if two sequences are identical, the Similarity
ratio is 1.

Following de novo sequencing of peptides, a mapping
algorithm is used to map the peptides to proteins. For
example, if the top 10 candidate peptides are kept for each
spectrum, then a set of k-length subsequences are generated
based on each peptide sequence, where k is an empirical

parameter usually set to 3 or 4. The whole set of these
k-length strings form a dictionary. Then Aho-Corasick algo-
rithm47 is used to find out whether the proteins in the
database can each find a match of one or more sequences
in the dictionary in a linear time complexity. If a match is
retrieved, the short sequence in the original match is
extended to verify whether the original peptide sequence can
be mapped to a protein with a considerable Similarity ratio
(for the experiments in this paper, the threshold of Similarity
ratio is set as 0.85), which is measured by the extended
Levenshtein distance mentioned above.

Table 2. Comparison of de novo peptide sequencing algorithms on STD-208

percentage of identifications with a subsequence of at least x amino acids long

algorithms correct peptides correct aa predicted aa x ) 3 x ) 4 x ) 5 x ) 6 x ) 7 x ) 8 x ) 9 x ) 10

pNovo 181 1837 (96.2%) 1910 93.8 90.9 90.4 88.0 63.9 54.8 51.9 45.2
PepNovo 117 1454 (98.4%) 1478 75.0 59.1 45.2 32.7 16.8 13.0 7.2 3.9
PEAKS 147 1784 (92.5%) 1928 97.5 80.6 50.3 36.3 21.4 14.9 7.5 4.5

Table 3. Comparison of de novo Peptide Sequencing Algorithms on WORM-767

percentage of identifications with a subsequence of at least x amino acids long

algorithms correct peptides correct aa predicted aa x ) 3 x ) 4 x ) 5 x ) 6 x ) 7 x ) 8 x ) 9 x ) 10

pNovo 612 8190 (94.9%) 8633 99.1 98.4 97.4 95.8 92.7 86.0 74.2 60.2
PepNovo 320 6695 (95.7%) 6993 98.7 97.1 94.8 91.5 88.3 68.2 46.0 30.1
PEAKS 538 8136 (93.5%) 8699 99.6 98.8 97.9 95.4 91.1 82.3 69.8 55.8

Figure 3. Peptide length distribution of the correct full-length sequences generated by different de novo sequencing algorithms on (a)
STD-208 and (b) WORM-767.

Similarity ratio(a, b) )

{length(a) - LD(a, b)
length(a)

if length(a) > LD(a, b)

0 otherwise
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Performance on STD-208 and WORM-767. De novo peptide
sequencing results on STD-208 and WORM-767 are shown in
Tables 2 and 3, respectively. All three algorithms, pNovo, PEAKS
(PeaksStudio5.1) and PepNovo (latest release on 2009.10.29),
achieved high accuracy in predicting amino acid residues,
which strongly suggests that HCD is well suited for de novo
sequencing. Because HCD spectra are of high mass accuracy
and high resolution, the complexity of the spectrum graph is
sharply decreased, and optimal paths can be retrieved more
precisely. In both data sets, PepNovo predicted the least
number of amino acid residues, although its accuracy is the
highest. Both PEAKS and pNovo made longer-peptide predic-
tions, and pNovo results were more precise. Compared with
PEAKS and PepNovo, pNovo achieved superior results with a
larger number of correct full-length sequences (87.0% of the
total spectra in STD-208 and 79.8% in WORM-767). The pNovo
scoring scheme takes mass accuracy into consideration, so low
intensity fragment ions with high mass accuracy also contribute
to the score with a proper weight. Because of this, even the N-
or C- terminus of a peptide sequence, which has been difficult
to predict, can be determined efficiently. pNovo also takes
advantage of internal fragment ions to enhance the reliability
of predicted sequences. With respect to the average length of
correct subsequences, pNovo performed the best, making
accurate predictions for more than half of the sequence tags
containing as many as eight amino acids (e.g., 54.8% on STD-
208), which is much better than PEAKS (14.9%) or PepNovo
(13.0%). In database search, sequence tags can be used to filter
candidate sequences in the database, and longer tags do so
much more efficiently than shorter ones (usually of length 3),40

Thus, long and accurate subsequences generated by pNovo
should be useful in tag-based database search as well.

As shown in Figure 3, pNovo has achieved a higher accuracy
on longer peptides compared with PepNovo and PEAKS on
both data sets. In general, both pNovo and PEAKS can
efficiently sequence peptides of varying lengths, and of these
two, pNovo generates a larger number of correct full-length
sequences. The performance of PepNovo falls as the length of
a peptide increases, especially for peptides longer than 9 amino
acids on WORM-767.

Compared with other de novo algorithms, peptides of charge
states higher than 2+ can also be sequenced efficiently by
pNovo. In WORM-767, 58 different peptides of 3+ charge were
retained under 1% FDR, and their spectra were sequenced by
pNovo with an overall accuracy of 0.89. With respect to these
peptides, the pNovo results are 100% correct for 34 of them
(∼59%). Only 11 full-length sequences (∼19.0%) extracted by
PepNovo are 100% correct, although the accuracy of its shorter-
sequence predictions is still as high as 0.92. PEAKS generated
27 correct sequences (∼46.6%) from these +3 spectra with an
overall accuracy of 0.87.

According to the performance of pNovo, PEAKS, and Pep-
Novo on both doubly and triply charged spectra, it is evident
that all three algorithms can achieve substantially high predic-
tion accuracy. PepNovo tends to produce shorter sequence
tags, and pNovo generates more full-length sequences than
either PepNovo or PEAKS.

Mass Accuracy. As depicted in Figure 2a, although (0.01 Da
is used as the normal mass tolerance width, ∼80% of the mass
deviations are within a much narrower tolerance window of
(0.001 Da. Figure 4a shows the relationship between mass
tolerance and identification results. As the tolerance window
increases from (0.01 Da to (0.5 Da, the number of identifica-

tions decreases by 78.5%. On the other hand, if the tolerance
window is narrowed to (0.001, only 63 correct sequences are
generated, and the vast majority of the spectra do not give any
answer due to a lack of backbone cleavage information.
Therefore, we conclude that fragment ion mass tolerance
greatly affects the performance of the de novo sequencing
algorithm.

Precision MS/MS data sharply reduce the complexity of
spectrum graph, thereby increasing the efficiency of pNovo.
As shown in Figure 4b, if the tolerance window is opened up
to (0.5 Da, equivalent to what is used for unit-resolution MS/
MS data such as those generated in an ion trap instrument,
the number of edges taken into consideration by the algorithm
is nearly four times as many as at (0.01 Da and the speed falls
by ∼90%.

Separation of Correct and Incorrect Identifications. We
computed RnkScr and PnvScr (PepNovo scores), the ALC score
(used by PEAKS), and C-score (designed in this work for pNovo)
for correct and incorrect identifications made by PepNovo,
PEAKS, and pNovo, respectively, using STD-208 as a test set.
As shown in Figure 5, C-score achieved the best separation of
correct and incorrect identifications. The average C-scores for
correct and incorrect identifications are 0.70 and 0.39, respec-
tively. The C-scores of correct and incorrect identifications
overlap only slightly in the region between 0.40 and 0.65. No
single spectrum is sequenced correctly with a C-score less than
0.40 or incorrectly with a C-score greater than 0.70. The
Kolmogorov-Smirnov (KS) distance of the two C-score distri-
butions is 0.864, which is much larger than that of PEAKS-ALC
(0.359), PepNovo-RnkScr (0.387) and PepNovo-PnvScr (0.357).
Furthermore, the average Similarity ratio of the incorrect
identifications with a C-score greater than 0.6 is 0.87, while for

Figure 4. (a) Above the threshold of (0.01 Da, the number of
correct sequences arrived at by de novo sequencing decreases
as fragment ion mass tolerance increases. The tolerance window
for penalty is set as (0.001 Da. (b) Number of edges in an
average spectrum graph increases as fragment ion mass toler-
ance increases. Edges of up to two amino acids are used.
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the incorrect identifications with a C-score less than 0.6 it is
0.53. To sum it up, a proper threshold of C-score can effectively
differentiate between the correct and incorrect identifications
and to control the false positive rate.

Merging HCD Spectral Pairs. As mentioned above, a pair
of HCD spectra (low-mass HCD and HCD) are acquired for
each precursor, with the mass range of one starting from 50
m/z and the other from 100 m/z. For convenience, we call the
former type low-mass HCD, and the latter normal HCD. A low-
mass HCD spectrum lacks strong peaks above 500 m/z, but it
is complementary to its cognate normal HCD spectrum, as it
contains fragment ions from 50 to 100 m/z. Some amino acids
such as Pro and Val tend to produce strong immonium ions
that fall within this range. Besides, ions below 500 m/z are on
average 1.5 times more intense in low-mass HCD than in
normal HCD. As expected, the best result was obtained from
the merged spectra which yielded 181 correct full-length
peptide sequences, whereas the low-mass spectra yielded 122
and the normal spectra 176. Similarly, more accurate subse-
quences or sequence tags were found using the merged spectra.
For example, the merged spectra yielded ∼9.3% more correct
10-aa subsequences than the normal spectra. These results
show that merging low-mass and normal HCD spectra im-
proves de novo sequencing. We expect that the low-mass
spectra will be more useful if the characteristics of low-mass
internal fragment ions are investigated further.

Algorithmic Performance on CID Spectra. For analysis of
the unit resolution ion trap spectra using pNovo, the penalty
factor for mass accuracy and the use of internal ions are
removed, and 100 peaks are kept in each spectrum. Although
pNovo generated accurate subsequences up to 16-aa long, the
average accuracy falls to 52.9%, which is lower by 6.7% than
the average accuracy of PepNovo on the 8-protein STD data.
Without the consideration of mass accuracy and internal ions,
the scoring scheme of pNovo is simpler than PepNovo. This

Figure 5. Distribution of scores given by different algorithms for all the identification results of STD-208.

Figure 6. Breakdown of the spectra from STD-951 with accepted
pNovo sequencing results. To each spectrum retained and
represented in this chart, at least one peptide is given by pNovo
with a C-Score greater than 0.6. (a) Spectra in STD-208, i.e. these
spectra were also identified by Mascot and pFind using a 1% FDR
cutoff. (b) Spectra for which pNovo identifications are less than
seven-amino acid long. (c) These spectra were also identified by
Mascot and pFind but were filtered out at 1% FDR cutoff.
However, these identifications were likely correct as pNovo gave
the same results. (d) From these spectra Mascot and pFind
identified peptide sequences similar to what pNovo found with
an average similarity ratio of 0.809. (e) Spectra from which pFind,
but not Mascot, identified peptides and they were in complete
agreement with the pNovo results. (f) Spectra from which the
pNovo results were indicative of PTMs or amino acid mutations.
(g) Spectra whose pNovo results contained partial sequence
errors and perhaps PTMs or amino acids mutations. (h) For these
spectra, the pNovo results were most likely wrong due to low
spectral quality or other reasons.
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again shows that the characteristics of HCD spectra, for
example, high mass accuracy and abundant information of
internal and immonium ions, are advantageous for de novo
sequencing.

Algorithmic Performance on STD-951. A total of 285
identifications with C-Scores greater than 0.6 were kept and
further analyzed (working on STD-208 at this threshold, 89%
correct identifications were kept and the percentage of false
identifications was ∼0.6%). Of these, 241 are doubly charged
peptides and the rest are triply charged.

As shown in Figure 6, identifications that also appear in STD-
208 are the most dominant fraction (fraction a). These are
surely correct identifications. The second largest fraction
(fraction c in Figure 6) consists of sequence identifications that
are probably right. This subset of spectra were identified by
Mascot or pFind but were filtered out by the 1% FDR cutoff.
However, these identifications were most likely correct as
pNovo gave the same results as database search. Fraction d
contains 15 pNovo identifications that are similar to both pFind
and Mascot results but with small differences (the average
similarity ratio is 0.809). From the spectra in Fraction f, pNovo
identified peptides with modifications and mutations (see Table
4 for a complete list). For example, deamidation of Asn or Gln
is a common post-translational modification and can also
happen during sample preparation. It can be identified by
database search at the cost of search time. In contrast, de novo
peptide sequencing can handle post-translational modifications
like deamidation and amino acid mutations almost without
extra time cost.

Table 5 shows that the sequence coverage of the eight
standard proteins obtained by pFind, Mascot, or pNovo are at
the same level except for Beta-galactosidase and Lysozyme. The
sequence coverage of beta-galactosidase by pNovo (15.3%) is
lower than that by pFind (26.1%) or Mascot (26.1%), whereas
for Lysozyme it is the other way around (55.1% by pNovo and
39.5% by either pFind or Mascot). The better performance by
pNovo on Lysozyme is due to the PTMs and amino acid
mutations and can be explained by Table 4. In short, pNovo
sequencing results are comparable with database search results,
and pNovo has the advantage of discovering PTMs and amino

acid mutations. We believe that for HCD spectra the de novo
peptide sequencing approach is of great potential and will be
very useful in proteomic research.

4. Discussions
There are several persistent obstacles in de novo sequencing.

First of all, de novo peptide sequencing is hardly possible if
fragment ion series contain too many gaps or if a gap is too
big.27 For this reason, CID spectra are especially troublesome
because of loss of ions in the low mass region (often referred
to as the “1/3 cutoff ”).41 Second, most algorithms cannot
handle spectra of highly charged peptides.40 Since highly
charged peptides tend to be the long ones, they often give rise
to a large number of fragments and these fragments can
assume more than one charge state. If the charge states of the
fragment ions cannot be determined, the resulting spectrum
graph may become so complex that it overwhelms the algo-
rithm. Lastly, top-ranked candidate peptides obtained by de
novo sequencing are often very similar to each other, and it is
extremely difficult to evaluate the candidates and determine
which one is the most likely answer. Although a variety of
validation models have been proposed and used in the
database search engines,48–50 only the one proposed by Kim
et al. is suitable for de novo sequencing algorithms in a limited
sense, for it slows down as the length of a peptide increases
and cannot be readily applied to nonadditive scoring models.51,52

Consequently, validation of de novo sequencing results mainly
relies on database search results or manual interpretation, and
this limits the application of de novo sequencing in proteomics.

Here we describe a de novo peptide sequencing algorithm
called pNovo. pNovo is designed for HCD spectra, which as
we have shown here have favorable features to help overcome
the obstacles in de novo peptide sequencing. The features
include the following: (1) a relatively wide mass range from 50
to 2000 m/z without low-mass cutoff, (2) more complete ion
series than CID and ETD, (3) high resolution and high mass
accuracy which translate into accurate determination of frag-
ment ion mass and charge, and simplified spectrum graphs,
(4) the presence of many internal and immonium ions which
can be used to distinguish between sequences with minor

Table 4. Nonredundant Identifications with Modifications or Mutations

peptides reported by pNovo peptides in the database comments

QPDIFKDIVNMIMHHQR QPDLFKDIVNMLMHHDR DfQ
APNDFNIKDFDVGGYIQAVIQR APNDFNLKDFNVGGYIQAVIQR NfD
VITSSAR VLASSAR AfT
IIFDGVNSAFHIWTNGR IIFDGVNSAFHLWCNGR CfT
IEDGIIIIDGKIPIIR IENGLLLLNGKPLLIR NfD, NfD
YGDFGTAAQQPDGIAVVGVFIKK YGDFGTAAQQPDGIAVVGVFIKV VfK
DTDGSTDYGIIQIDSR NTDGSTDYGILQINSR NfD

Table 5. Comparison of Protein Identification Results by De novo Sequencing (pNovo) vs Database Search (pFind and Mascot)

database search

pFind Mascot de novo sequencing using pNovo

protein source of organism #spec #pep % cov #spec #pep % cov #spec #pep % cov

Myosin Rabbit 21 21 13.6 21 21 14.2 18 18 11.8
Glycogen phosphorylase Rabbit 58 33 45.2 51 31 44.2 45 29 41.2
Serum albumin Bovine 44 17 33.3 43 17 33.3 45 17 33.3
Beta-galactosidase E. coli 26 16 26.1 18 16 26.1 17 11 15.3
Carbonic anhydrase Bovine 28 9 43.5 27 9 43.5 19 9 42.7
Trypsin inhibitor Soy bean 31 7 31.0 29 7 31.0 19 7 34.7
Ovalbumin Chicken 12 7 29.3 11 7 29.3 7 6 22.8
Lysozyme Chicken 30 6 39.5 28 6 39.5 34 8 55.1
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differences. Consideration of these features has made pNovo
a successful algorithm. For example, as shown in the Table 5,
pNovo made a similar number of peptide identifications as
database search. This is a big improvement over previous de
novo sequencing efforts. Below we discuss the next steps for
de novo sequencing.

First, post-translational modifications can be analyzed by de
novo sequencing from HCD spectra. For example, the mass
difference of Phe (147.068) and oxidized Met (147.035) is only
0.033, but this difference is big enough to tell them apart in
HCD spectra. Also, the presence or absence of the immonium
ion of Phe or Met can lend further proof. PTM analysis by
database search is time-consuming, especially if multiple PTMs
are considered simultaneously because it will cause a serious
combinatorial explosion of search space. It remains to be seen
if de novo sequencing can find a way to analyze PTMs more
efficiently, although an obvious advantage of de novo sequenc-
ing is that it can identify unexpected or unknown PTMs.
Second, HCD spectra of +4 or higher charge-state peptides can
be interpreted better. In this paper, only doubly and triply
charged spectra are used in the experiments. However, longer
peptides with higher charge state can also be obtained if more
missed cleavages are considered or other enzymes such as
Lys-N and Lys-C are used.53 The mass accuracy of HCD spectra
makes it possible to distinguish +4 or even +5 peaks based on
isotopic peak clusters. The main problem may be how to
determine the middle region of a peptide sequence, of which
less information is expressed in the spectra. This problem may
be alleviated by internal fragment ions observed in HCD
spectra. Third, sequencing novel proteins remains a challenge.
Most of the previous attempts were based on different enzy-
matic digestions to generate overlapping peptides.54,55 We
speculate that HCD coupled with multiple enzymatic digestions
and other fragmentation methods such as ETD may be fruitful
in automated protein sequencing.
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Figure S1. Plots of Offset Frequency Functions for prefix/suffix of HCD spectra mentioned in the 

algorithm section. In the plot of the prefix OFF, the 3 most intense peaks are located at 1.0061, 

-26.9885 and -17.0041, and we can confidently infer their corresponding ion types as b, a, and b-H2O 

(Table 2). In the plot of the suffix OFF, the peak located at 19.0159 is undoubtedly attributed to y-ions, 

and the next two peaks at 20.0189 and 21.0217 are mainly due to isotopic peaks of y-ions. The average 

distance between two adjacent peaks in this cluster is 1.0029, which is very close to the theoretical 

value, 1.0034. The offsets at 1.9905 and 1.0065 correspond to y-NH3 and y-H2O ions. In addition, we 

also chose to consider the offset at 10.0106, which is due to the y
2+

 ions, in the pNovo algorithm. It 

appears in the triply charged spectra with a relatively higher frequency. 



 

 

 

Table S1. Probabilities of common ion types appeared in HCD data, with the consideration of mass 

regions and the relations between these types of ions.  

 
total low medium high 

Prob (a) 0.200 0.464 0.097 0.051 

Prob (b) 0.286 0.0.533 0.217 0.111 

Prob(y) 0.668 0.661 0.783 0.539 

Prob(y
0
) 0.155 0.235 0.118 0.125 

Prob(y
*
) 0.177 0.273 0.156 0.111 

Prob(y
2+

) 0.100 0.033 0.071 0.199 

Prob(y
2+

)
#
 0.388 0.089 0.413 0.634 

Prob(y|y
*
) 0.932 0.924 0.948 0.922 

Prob(y|y
0
) 0.970 0.951 0.989 0.982 

Prob(y
0
|y) 0.225 0.338 0.149 0.228 

Prob(y
*
|y) 0.247 0.382 0.190 0.189 

Prob(b|a) 0.739 0.691 0.877 0.867 

Prob (a|b) 0.518 0.602 0.392 0.398 

Prob (b|y) 0.328 0.159 0.254 0.649 

Prob (y|b) 0.766 0.657 0.917 0.952 

Prob(y|y
2+

)
#
 0.520 0.977 0.889 0.188 

# only triply charged spectra are considered. 

Note: y
0
 and y* denote y-ions with a neutral loss of water and ammonia, respectively. Three regions, 

low, medium and high ones, are computed by evenly split the range between 0 and the value of the 

peptide molecular weight plus a Proton. 

 

Table S2. Proteins used in the Experiments and their corresponding IDs in Swiss-Prot database 

(v.56.2) 

Protein ID in Swiss-Prot database 

Myosin Q28641 

Glycogen phosphorylase P00489 

Serum albumin P02769 

Beta-galactosidase P00722 

Carbonic anhydrase P00921 

Trypsin inhibitor P01070 

Ovalbumin P01012 

Lysozyme P00698 

 

 

 

 

 



 

Table S3. Parameters of database search. 

Item Setting in pFind and Mascot 

Database Target-reversed strategy is used and the 

target database consists of the proteins in 

Table S2. 

Enzyme Trypsin 

Maximum missed cleavage sites 2 

Precursor tolerance ± 10 ppm 

Fragment tolerance ± 0.01Da 

Fixed Modifications Carbamidomethylation (C) 
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