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ABSTRACT

Motivation: Identification of post-translationally modified proteins
has become one of the central issues of current proteomics. Spectral
library search is a new and promising computational approach
to mass spectrometry-based protein identification. However,
its potential in identification of unanticipated post-translational
modifications has rarely been explored. The existing spectral library
search tools are designed to match the query spectrum to the
reference library spectra with the same peptide mass. Thus, spectra
of peptides with unanticipated modifications cannot be identified.
Results: In this article, we present an open spectral library
search tool, named pMatch. It extends the existing library search
algorithms in at least three aspects to support the identification
of unanticipated modifications. First, the spectra in library are
optimized with the full peptide sequence information to better
tolerate the peptide fragmentation pattern variations caused by some
modification(s). Second, a new scoring system is devised, which
uses charge-dependent mass shifts for peak matching and combines
a probability-based model with the general spectral dot-product for
scoring. Third, a target-decoy strategy is used for false discovery rate
control. To demonstrate the effectiveness of pMatch, a library search
experiment was conducted on a public dataset with over 40 000
spectra in comparison with SpectraST, the most popular library
search engine. Additional validations were done on four published
datasets including over 150 000 spectra. The results showed that
pMatch can effectively identify unanticipated modifications and
significantly increase spectral identification rate.
Availability: http://pfind.ict.ac.cn/pmatch/
Contact: yfu@ict.ac.cn; rxsun@ict.ac.cn
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Liquid chromatography coupled with tandem mass spectrometry
(LC-MS/MS) is the key experimental method for large-scale protein
identification. In this method, proteins are digested into peptides,
which are then ionized and dissociated in a mass spectrometer.
The mass-to-charge ratios (m/z) and the intensities of the resulting
product ions are measured to produce MS/MS spectra. To identify
the peptides and proteins, sequence database search has achieved
great success in the past years, and a variety of search tools have been
developed, e.g. SEQUEST (Eng et al., 1994), Mascot (Perkins et al.,
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1999) and pFind (Fu et al., 2004). Such an approach is implemented
by comparing the similarities between the experimental spectra
and the theoretical spectra predicted from peptide sequences in
a database. Unfortunately, due to insufficient understanding of
the factors that determine peptide fragmentation, most current
search tools employ simplified fragmentation models, such as the
uniform backbone dissociation model, leading to many unidentified
or misidentified spectra. In recent years, with the availability of
millions of confidently identified MS/MS spectra, an alternative
as well as complementary approach called spectral library search
has emerged. Its essential idea is to build a library of experimental
reference spectra rather than theoretically predicted ones. Since this
approach was first introduced to the field of protein identification
by Yates et al. (1998), the last decade has witnessed a group
of mass spectral library search tools, such as SpectraST (Lam
et al., 2007, 2008), NIST MSPepSearch (http://peptide.nist.gov/),
BiblioSpec (Frewen et al., 2006), X!Hunter (Craig et al., 2006),
ProMEX (Hummel et al., 2007), HMMatch (Wu et al., 2007) and
MSDash (Wu et al., 2008).

Compared to the sequence database search, the spectral library
search takes advantage of the previously obtained knowledge and
has three obvious merits. First, improved sensitivity. Spectral library
search takes into account the fragmentation pattern individually for
each experimental spectrum. It yields more discriminative match
scores than does the sequence database search. Second, high search
speed. Experiments show that in shotgun proteomics some peptides
are detected all the time while some are never (Lam et al., 2008).
Thus a well-organized spectral library consisting of empirically
observed experimental spectra permits a smaller and more accurate
search space. Third, convenient identification of extraordinary
spectra, such as those produced from peptides with unusual post-
translational modifications (PTMs). These spectra are big challenges
to sequence database search engines, but could be identified as easily
as the ordinary ones by spectral library search (Craig et al., 2006;
Hummel et al., 2007; Lam et al., 2007; Wu et al., 2007). Apparently,
the above merits are based on reliable and comprehensive spectral
libraries. One of the main obstacles is library coverage (Lam
et al., 2007; Yates et al., 1998). Many efforts have been made
on library constructions, such as NIST (http://peptide.nist.gov/)
and PeptideAtlas (http://www.peptideatlas.org/speclib/). However,
it remains difficult considering that PTMs may generate substantial
modified forms of a peptide. Note that there have been hundreds
of known modifications (e.g. 512 entries recorded in the RESID
modification database by February 26, 2010) and only a few of
them, e.g. phosphorylation, were extensively studied in the past.
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In fact, PTM mapping has become the central issue of current
proteomics. The conventional sequence database search approach
meets inevitable difficulties in PTM-centric data analysis, since
the PTM types have to be explicitly specified by users. In this
case, not only are some possible unanticipated PTMs missed, but
also the number of the PTMs considered has to be restricted to
avoid combinatorial explosion of theoretical peptides in all possible
modified forms. To solve these problems, the mode of open search
has been proposed, in which the peptide precursor ion mass tolerance
is largely expanded and one or more modification masses are inferred
to compensate for the peptide mass difference (Chen et al., 2009;
Tsur et al., 2005). Such an approach does not require specifying PTM
types and is able to identify spectra from peptides with unanticipated
PTMs, though it still has some defects to overcome (e.g. low
search speed). Also, Bandeira et al. (2007) developed a database-
independent algorithm, named Spectral-Networks, to detect spectral
pairs produced from modified and unmodified versions of the same
peptide and identify the unanticipated modifications by propagating
spectral annotations in the networks of related spectral pairs.
However, the potential of applying the same idea to the spectral
library search had not been explored until very recently. Ahrne et al.
(2009) proposed a workflow to combine open library search with
sequence database search to increase spectral identification rate, but
the library search engine they used was not deliberately designed
for the open search mode. Besides, a spectral matching algorithm
Bonanza is sometimes considered as an open library search tool
(Falkner et al., 2008; Menschaert et al., 2009), but it was actually
devised in a clustering framework and it is unknown whether the
methods in it are directly applicable to general library search, such
as the method for false discovery rate (FDR) control.

There are three key issues that have to be addressed when
designing an open library search tool. The first one is the shifted
m/z values of the product ions carrying PTMs. One solution to
this issue lies in the proper use of precursor ion mass differences
between the spectral pairs to be matched; that is, the mass differences
should be considered as the potential PTM masses, as done by some
open sequence database search engines, e.g. PTMap (Chen et al.,
2009). However, none of the current library search algorithms has
considered it. Although Bonanza does allow a mass shift equal to
the mass difference when matching product ion peaks, the mass
shift value is roughly determined without considering the charge
states of product ions. The second issue is how to use the sequence
information behind library spectra. Although some of the current
library search algorithms have tried some ways to use the sequence
information by annotating the explained peaks in library spectra,
they do not make the best of it, especially for scoring. Usually,
only a proportion of the theoretical product ions are observed in an
experimental spectrum. However, the omitted proportion may also
be valuable, in particular for the open search where the changes
of peptide fragmentation patterns caused by some unanticipated
PTM(s) should be considered. The third issue is FDR control of
search results. The FDR control methods used in current library
search engines are not as mature as those used in sequence database
search, e.g. the widely adopted target-decoy database search strategy
(Elias and Gygi, 2007).

In this article, we present a dedicated open spectral library
search tool, named pMatch, to identify unanticipated PTMs from
MS/MS data. It is the first time, to our knowledge, that the issues
mentioned above are comprehensively addressed. First, the library

is constructed with spectra optimized by the full peptide sequence
information to better tolerate the peptide fragmentation pattern
variations caused by some PTMs. Second, a new scoring system is
devised, which uses charge-dependent mass shifts for peak matching
and combines a probability-based model with the general spectral
dot-product for scoring. Third, a target-decoy strategy is used for
FDR control. To demonstrate the effectiveness of pMatch, a library
search experiment was conducted on a public dataset of standard
proteins with over 40 000 spectra. Since no open library search
tool is currently available, comparison was made with SpectraST,
the most popular library search engine. As expected, pMatch
significantly outperformed SpectraST in detecting unanticipated
PTMs and increasing the number of identified spectra. Additional
validations were done on four published datasets including over
150 000 spectra; a variety of PTMs were found and the spectral
identification rates were increased to a large extent.

2 METHODS
As an integrated library search engine, pMatch supports an entire workflow
including library construction, spectral matching and result evaluation.

2.1 Library construction
pMatch enrolls the identified raw spectra and makes full use of their
corresponding sequence information to construct the library of ‘optimized’
consensus spectra.

At the beginning, consensus spectra are generated from duplicate spectra
for redundancy removal. Here, the credibly identified raw spectra with
the same peptide sequence, charge and modification states are assumed as
duplicate spectra. To produce a consensus spectrum, the peaks from each
raw spectrum have their intensities normalized such that the top intensity
value is one. The common peaks (peaks from different spectra but with
small differences in m/z according to the instrument precision, e.g. ±0.5 Th
for ion trap) in duplicate spectra are combined into a consensus peak,
with the averaged m/z and intensity values. Only those consensus peaks
occurring in the majority of the duplicate spectra are retained. All the
peak intensities are then rescaled by taking their square roots. This strategy
has been demonstrated to lead to better performance in spectral similarity
comparison (Liu et al., 2007; Stein and Scott, 1994).

Next, consensus spectra are optimized by incorporating the peptide
sequence information to make theoretical peaks ‘bud’ (including those
unobserved ones).As is shown in Figure 1, for each consensus (experimental)
spectrum, a theoretical spectrum is generated with theoretical ion peaks
(the b/y series product ions for collision-induced dissociation (CID) in this
study) in the observed m/z range, with a uniform intensity value one. In

Fig. 1. An optimized spectrum holds the duality of experimental and
theoretical spectra. The parameter θ spanning from 0 to 1 can be considered
as the tendency towards the theoretical spectrum. The optimized spectrum
equals the experimental spectrum when θ is 0, and is shaped the same as the
theoretical spectrum when θ reaches 1.
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each consensus spectrum, peak intensities are normalized making the top
intensity value be one. Then, the intensities of the peaks in the theoretical and
consensus spectra are, respectively, multiplied by the factor of θ(0 ≤ θ ≤ 1)
and 1−θ, and the two spectra are merged by superimposing their common
peaks. Thus, the optimized consensus spectra are generated, with each
explained peak annotated by its ion type, fragmentation position and charge
state. This ‘budding’ strategy regains a part of sequence information that was
lost in the experimental spectra. The optimized spectra emerge as a theoretical
and experimental duality and are expected to tolerate the variations in peptide
fragmentation patterns introduced by some PTMs.

The last procedure is to generate a group of decoy spectra with the same
volume as the optimized consensus spectra, since pMatch uses a target-
decoy strategy to evaluate its search results. The details of decoy spectrum
generation scheme will be described later in this article.

2.2 Spectral matching
Given a query spectrum, those library spectra with their precursor ion mass
differences within a user-set tolerance and with the same charge state are
selected as candidates for comparison. The precursor ion mass tolerance
may be very large for the open search, e.g. ±300 Da. Finally, the candidate
spectrum with the highest match score is assigned as the identification result
of the query one.

2.2.1 Preprocessing Before matching, each query spectrum undergoes a
simple preprocessing procedure. Isotopic peaks are removed and the peak
intensities are rescaled by taking their square roots. At most the top 6 peaks
per 100 Th are reserved for later matching.

2.2.2 Peak hit determination To determine peak hits when matching two
spectra, the precursor ion mass difference (which we call �M in the following
parts of this article) is used to compute the allowed mass shifts for peak
matching. Since the charge states of the explained peaks in library spectra
are already known, the mass shifts could be accurately determined. The
specific rules to find out peak hits are exhibited as follows. Peaks from the
query spectrum are examined in the descending order of their intensities.
If the query peak being examined has its m/z value mQ, and the user-set
product ion m/z tolerance is Tp, then two sets of library peaks are selected:

S1 ={library peak with m/z value mL : |mQ −mL | < Tp},
S2 ={explained library peak with m/z value mL and charge state chrL :

|mQ −mL −�M/chrL |<Tp}.
The peaks from either S1 or S2 are chosen as candidate peaks if the �M is
big enough to cause a PTM (say beyond ±0.5 Da); otherwise, only peaks
from S1 are chosen. The most intensive candidate peak is finally determined
as the hit peak to the query peak. Each peak can only be hit at most once.

2.2.3 Similarity scoring As for spectral similarity scoring, pMatch
employs two sub-scores: a spectral dot-product score and a probability-based
score.

The spectral dot-product score (SDP_Score) is calculated as:

SDP_Score=
∑

peak_hits IQ ×IL√∑
query_peaks I2

Q ×
√∑

library_peaks I2
Q

, (1)

where IL and IQ denote the intensities of the library peak and the query peak,
respectively.

For a query spectrum, there are usually several candidate library spectra
(here we let the number be W ). To determine whether one match ‘stands out’
from the remaining candidates, we use a probability-based score. A peak in
a query spectrum is defined as a capital peak if its intensity is no less than
5% of the most intensive peak and is ranked in the top 10 in this spectrum. A
hit between a capital peak and an explained library peak is called a mighty
hit. Let n be the number of the capital peaks in the query spectrum, ki be the

number of mighty hits in the match between the query and the i-th candidate
spectrum, and mi be the number of explained peaks of the i-th candidate (the
value of mi is doubled if mass shifts are triggered in the i-th match). Then
the global average probability (p) that a capital query peak and an explained
library peak make a peak hit can be calculated as follows:

p=
∑W

i=1 ki/n∑W
i=1 mi

. (2)

For each capital peak in the query spectrum, the probability (P) that a mighty
hit occurs by chance between it and one of the explained peaks in the i-th
candidate library spectrum is:

P=1−(1−p)mi =1−[1−C1
mi

·p+···+Cmi
mi

·(−p)mi ]≈p·mi. (3)

The probability (P_value) that ki or more mighty hits occur by chance
between the query and the i-th candidate library spectrum is:

P_value=
n∑

j=ki

Cj
n ·Pj ·(1−P)n−j . (4)

The probability-based score, denoted by P_Score, is then calculated
according to Equation (5). It evaluates the significance of a certain match on
the basis of the statistic background of all candidate matches.

P_Score=√−log(P_value). (5)

The final score of a match between a library spectrum and the query spectrum,
as we call ‘pMatch_Score’, is the product of SDP_Score and P_Score:

pMatch_Score=SDP_Score·P_Score (6)

2.2.4 PTM locating After the library spectrum with the highest
pMatch_Score is found, the location of the PTM on the peptide is assigned as
follows. Each amino acid residue is assumed as the PTM site and a theoretical
spectrum is predicted from the peptide with the PTM-containing product
ion peaks shifted accordingly. Then this series of theoretical spectra are
scored against the query spectrum using the common spectral dot-product.
The highest scored site is accepted as the PTM location.

2.3 Control of false discovery rate
If a large set of query spectra are searched, then the control of FDR is
necessary. Since the target-decoy search strategy has been the leading way
to estimate the FDR of the sequence database search results, a natural idea
is to extend it to the spectral library search. Yen et al. (2009) and Lam
et al. (2010) have demonstrated the feasibility of using decoy spectra for
FDR estimation in the spectral library search. Here, we extend this idea into
the open search mode, and employ a similar approach for decoy spectra
generation. For each optimized consensus spectrum in the library, a decoy
spectrum is generated with the same precursor ion mass and charge state.
Since the amino acid sequence is already known, a ‘pseudo-reversed’ (Elias
and Gygi, 2007) sequence is made from the original peptide sequence;
that is, the sequence of all the amino acid residues is reversed except the
C-term one, by which means the enzyme digestion feature is reserved. Then,
the corresponding decoy spectrum is born with explained peaks moved to the
new m/z positions determined by their annotations and the pseudo-revered
sequence.

pMatch filters search results by their pMatch_Scores and estimates FDR
using the formula FDR = FP/TP, where FP and TP represent the numbers
of matches to the decoy and original spectra, respectively. Importantly, for
the open search mode, an issue that could produce considerable impact on
spectral identification rate is the result filtration rule. The normal rule is to
rank the whole result list by score and then calculate the estimated FDR.
Because of the mass shifting strategy used in the open search, however, a
pair of spectra with significant �M (where mass shifting works) raises the
chance of peak hits, and thus are likely to produce a higher score compared to
the pairs with insignificant �M. Obviously, the false positive identifications
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with significant �M would have higher chance to pass a uniform score
cutoff. Therefore, a more reasonable filtration rule that we advocate is to
group all the results into two lists according to their �M values, i.e. those
with insignificant �M and those with significant �M. Afterwards, the results
in the two groups are ranked separately for FDR estimation. This separate
filtration rule is expected to increase the spectral identification rate compared
to the normal rule.

3 RESULTS
In this study, a comparison experiment on a public dataset was
carried out with detailed analysis between pMatch and SpectraST in
both the conventional and the open search modes. To further validate
pMatch, four additional published datasets were analyzed in the open
search mode. The five datasets including ∼200 000 spectra in total
were all engaged in the same experimental workflow.

3.1 Datasets and library construction
The five published datasets chosen in this study were from different
species. The MS spectra were derived from high- or medium-
precision instruments, as the use of high-precision instruments
becomes the trend of proteomics development (Mann and Kelleher,
2008), and it is practical to gain more accurate PTM masses
determined by the precursor ion mass differences. The brief
summaries of the datasets are given below:

• ISB-18mix is designed deliberately for the purpose of testing
peptide and protein identification software tools (Klimek et al.,
2008). Eighteen purified recombinant proteins were mixed and
digested by trypsin into peptide mixtures, which were then
analyzed by LC-MS/MS on diverse mass spectrometers under
various conditions. In this study, the Mixture 3 on a LTQ-FT
mass spectrometer with all 10 LC-MS/MS runs was chosen for
our experiment. We focused on the analysis of this data for
comparison between pMatch and SpectraST.

• TAP-PSD95 refers to the samples from the mice with proteins
in gene-targeted TAP tagging. The samples were purified
in four replicates, which were then analyzed by LTQ-FT
mass spectrometer (Fernandez et al., 2009). Replicate_2 was
randomly chosen for our experiment.

• HUPO-14 is from a study in which 20 highly purified
recombinant human proteins were distributed to 27 laboratories
for mass spectrometry-based analysis (Bell et al., 2009). The
data from Lab 14 was chosen in our study and the instrument
they used was LTQ-FT.

• Haas-Data refers to a yeast sample digested by trypsin, from
which the collision activated dissociation (CAD) MS/MS
spectra were produced by different mass spectrometers (Haas
et al., 2006). Only the dataset from the LTQ-FT instrument was
used here.

• Gygi-Qstar refers to the yeast proteome digested by trypsin
which was analyzed by LC-MS/MS using a Q-STAR mass
spectrometer (Elias et al., 2005).

The way to construct the spectral libraries is similar to that proposed
by Ahrne et al. (2009). This way has been demonstrated to be very
effective in increasing the spectral identification rate of a dataset.
First, the spectra in a dataset are searched against a protein sequence
database. Then, the credibly identified spectra are accumulated to

construct a spectral library, against which the remaining spectra are
afterwards searched.

3.2 Results on the ISB-18mix dataset
To identify some of the spectra for library construction, the pFind
search engine (Fu et al., 2004; Li et al., 2005; Wang et al., 2007)
(version 2.3) was used to search a target-decoy sequence database
including the standard, pollution and background proteins (see
Supplementary Data for the detailed description of the database).
During searching, the precursor ion mass tolerance was set to
±50 ppm, and the product ion m/z tolerance was ±0.5 Th. Full
tryptic specificity was applied, allowing up to two missed cleavage
sites. Carbamidomethylation of cysteine was specified as a fixed
modification, and oxidation of methionine as a variable one. After
sequence database search, we observed that most of the identified
spectra with high confidence had their precursor ion mass biases of
around +2 ppm. The search results were then filtered with precursor
ion mass deviation from −2 to +6 ppm at 1% FDR. Additionally,
only those spectra from the proteins containing at least two unique
detected peptides were reserved. Finally, a total of 12 032 identified
spectra, including 577 unique peptides (with distinct amino acid
sequences and PTMs) and 963 unique precursor ions (with distinct
sequences, PTMs and charge states), were obtained and used to
construct a spectral library.

In terms of the library search, pMatch (version 1.0) and SpectraST
(version 3.1) were engaged with the same spectral source for
library constructions and searches, and both the conventional and
the open searches were carried out. For SpectraST, the precursor
ion m/z tolerances were set to ±2 and ±150 Th, respectively, for
the conventional and the open searches. The parameter to control
the production m/z tolerance was 1 bin/Th (equal to ±0.5 Th).
The search results were post-processed by PeptideProphet (Keller
et al., 2002) for FDR estimation, as suggested by Lam et al. (2007,
2008). While for pMatch, in library construction, the θ in the
‘budding’ step was set to zero for conventional search to reduce
spectral distortion and was set to 0.2 for open search to increase the
robustness of the library. Given that the lowest charge state of the
spectra in this dataset was 2+, the precursor ion mass tolerances
were set to ±4 and ±300 Da, respectively, for the conventional
and the open searches. The product ion m/z tolerance was ±0.5 Th.
The FDRs of the search results were controlled by the target-decoy
strategy with the normal filtration rule (not the separate filtration
rule for a fair comparison).

The number of identified spectra from both engines at different
FDR cutoffs are illustrated in Figure 2. It can be seen that compared
to the conventional search, the open search significantly increased
the number of identified spectra for both search engines. pMatch
and SpectraST comparably performed in the conventional search.
When it comes to the open search, however, pMatch identified nearly
twice as many spectra as SpectraST through the whole FDR range
considered.

In order to explore the differences between the two engines, a
careful analysis was conducted on the results under 1% FDR. In
the conventional search, as shown in Figure 3a, there were 2462
spectra identified by both engines, among which 2451 had agreeable
matches and 11 conflicted. After manually validating the 11 spectra
by taking a close-up view of their MS/MS spectra and tracing back to
the corresponding MS spectra, we found all of the 11 query spectra
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were co-eluted spectra and their identifications by the two engines
caught different components. Supplementary Figure S1 gives a
typical example of a co-eluted spectrum. Unlike the conventional
search where the two engines showed over 80% overlap between
their results, in the open search, as revealed by Figure 3b, only <40%
of the pMatch’s identifications could be found in SpectraST’s results,
although the 13 disagreements all came from co-eluted spectra also.

Fig. 2. FDR curves for pMatch (solid lines) and SpectraST (dashed lines)
search engines. The x-axis denotes the FDR value and the y-axis denotes the
number of identified spectra. The thin and thick lines represent the results of
the conventional and the open searches, respectively.

Fig. 3. Venn diagrams of the number of identified spectra at 1% FDR from
pMatch and SpectraST in the conventional (a) and open (b) search modes.
The ashen regions denote the spectra with inconsistent identifications from
the two engines.

As is discussed previously, each identification has the precursor
ion �M as the potential PTM mass in the open search. The
histograms of the �M values detected by the two engines are
exhibited in Figure 4. As shown, some intensive �M detected by
pMatch were not or rarely detected by SpectraST, for example,
−128 Da (lysine loss), 22 Da (sodium adduct), 38 Da (calcium
adduct) and 152 Da (carbamidomethylDTT). The crucial reasons
should be that some modified spectra have a considerable percent
of the observed peaks with their m/z values shifted and that
some special PTMs might largely vary the fragmentation pattern
of a peptide (see Supplementary Figure S2 for a spectrum with
a sodium adduct and Supplementary Figure S3 for the influence
of the ‘budding’ strategy on PTM detecting). However, neither did
SpectraST consider the mass shifts caused by unanticipated PTMs
during peak matching, nor made use of the sequence information
to tolerate the peptide fragmentation pattern variations. On the
contrary, SpectraST identified more spectra with very small absolute
�M values (within ±5 Da), which mainly resulted from duplicate
spectra, co-eluted spectra and spectra from deamidated peptides.

Then, we concentrated on the abundant �M (with ≥20 spectra for
either engine) and manually validated some representative spectra.
Nearly all of the abundant �M were explained (see Supplementary
Table S1 for their frequencies and explanations). Among these �M,
many PTMs were found (shown in Table 1); for example, a disulfide
bridge was detected (shown in Figure 5). Additionally, some �M
were caused by amino acid substitutions, or missed cleavages, or
semi-digestions, while some corresponded to the combinations of
two or more other �M values. Only two �M were not explained
using our current knowledge. One of them had evidence supporting
that there was indeed something happened on the peptides (see
Supplementary Figure S4), while the other one might be a false
positive.

In addition to those abundant �M, low-abundance ones also
provided a wealth of information. Some of them corresponded to
important PTMs, such as phosphorylation. pMatch and SpectraST
identified 13 and eight spectra, respectively, with �M of 79.97 Da.
These spectra are supposed to be derived from phosphorylated
peptides. Figure 6 gives an example of such spectra.

Fig. 4. Histograms of �M detected by pMatch (top) and SpectraST (bottom). The intensive peaks are annotated by their �M values in integer accuracy.
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Table 1. The open search results of pMatch on all datasets

Dataset Total
MS/MS

Identified spectra Identification rate raised
by Spec Lib

Abundant modifications (Da)

Seq DB Spec Lib

ISB-18mix 40 376 12 032 +8025 29.80% → 49.68% −116 (a disulfide bridge); −18 (dehydration); −17 (ammonia loss);
−16 (ammonia loss and deamidation); 1 (deamidation);
2 (two deamidations); 16 (oxidation); 22 (sodium);
23 (sodium and deamidation); 26 (acetaldehyde +26);
38 (calcium); 39 (calcium and deamidation);
152 (carbamidomethylDTT);
153 (carbamidomethylDTT and deamidatoin);
174 (carbamidomethylDTT and sodium)

TAP-PSD95 36 387 3575 +1882 9.82% → 15.00% −18 (dehydration); −17 (ammonia loss); 1 (deamidation);
14 (methylation); 16 (oxidation); 22 (sodium);
26 (acetaldehyde +26); 28 (formylation); 32 (dioxidation);
42 (acetylation); 54 (acetaldehyde +26 and formylation);
70 (formylation and acetylation); 80 (phosphorylation)

HUPO-14 15 221 7281 +2418 47.84% → 63.72% −17 (ammonia loss); 1 (deamidation);
12 (formaldehyde induced modification);
71 (propionamide); 26 (acetaldehyde +26); 42 (acetylation)

Haas-Data 56 599 9172 +2558 16.21% → 20.74% −17 (ammonia loss); 1 (deamidation); 43 (carbamylation);
171 (carbamylation and lysine added)

Gygi-Qstar 46 195 9255 +4357 20.03% → 29.40% 1 (deamidation); 12 (formaldehyde induced modification);
22 (sodium); 28 (formylation)

Fig. 5. An example of a disulfide bridge. (a and b) are the tandem mass spectra of a same peptide sequence IVSNASCTTNCLAPLAK, but the former
one is with two carbamidomethylated cysteines, while the latter one has a disulfide bridge across the two cysteines. The spectrum in (a) has several product
ions indicating the CID fragmentations between the two cysteines, while in (b) no noticeable ions supporting such fragmentations can be found in the query
spectrum identified with the �M of −116.06 Da. Most of intensive peaks are explained with low m/z errors.
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Fig. 6. A spectrum from a phosphorylated peptide. This triply charged spectrum was identified to have the peptide sequence of
TGKPDYVTDSAASATAWSTGVK, with a �M of 79.97 Da that implies a phosphorylation. The modified site is the 10th amino acid residue (the first
serine) from the N-term. The neutral loss peaks of precursor ions by masses of −98 and −116 Da are obvious, and there are also many neutral loss peaks of
product ions by −98 Da. These features are typical for spectra of phosphorylated peptides. Most of intensive peaks are explained with low m/z errors.

3.3 Results on four additional datasets
For further validations, four additional published datasets were
analyzed by pMatch in the open search mode, obeying the same
workflow as above. The detailed search parameters are listed in
Supplementary Table S2. To explore how much in the end pMatch
could help to increase the spectral identification rate, here we used
the separate filtration rule for FDR estimation. Table 1 shows the
analysis results. For completeness, the result of the ISB-18mix
dataset is also listed. We can see that the spectral identification
rates significantly grew after library search and some interesting
modifications were detected. For example, the �M of 12 Da detected
in two datasets all occurred on peptide N-terms or basic amino
acids. This modification is induced by formaldehyde (Toews et al.,
2008), and has been recently detected in other datasets (Menschaert
et al., 2009). Other detected PTMs include formylation (28 Da),
acetylation (42 Da), methylation (14 Da), etc. Interestingly, in the
Gygi-Qstar dataset, a number of spectra are identified with �M
distributed from −20 to −3 Da. Many of them show no mass shift
in product ions, compared with their matched library spectra (see
Supplementary Figure S5), indicating that their precursor ion masses
might have been incorrectly judged.

4 CONCLUSION
We have presented a novel spectral library search tool, pMatch,
deliberately designed for the open search mode. Its ability to identify
spectra with unanticipated PTMs was demonstrated on several
datasets. In cooperation with traditional sequence database search,
pMatch is able to push up the spectral identification rate to a large
extent. The key points to contributing the success of this method lie
in three aspects: the consideration of accurate mass shifts for peak
matching; the use of full peptide sequence information for consensus
spectral optimization; a new scoring function that combines the
general intensity-based dot-product with a probabilistic model of
peak matching.
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