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Determining the monoisotopic peak of a precursor is a first step in interpreting mass spectra,

which is basic but non-trivial. The reason is that in the isolation window of a precursor, other

peaks interfere with the determination of the monoisotopic peak, leading to wrong mass-to-

charge ratio or charge state. Here we propose a method, named pParse, to export the most

probable monoisotopic peaks for precursors, including co-eluted precursors. We use the

relationship between the position of the highest peak and the mass of the first peak to detect

candidate clusters. Then, we extract three features to sort the candidate clusters: (i) the sum of

the intensity, (ii) the similarity of the experimental and the theoretical isotopic distribution,

and (iii) the similarity of elution profiles. We showed that the recall of pParse, MaxQuant, and

BioWorks was 98–98.8%, 0.5–17%, and 1.8–36.5% at the same precision, respectively. About

50% of tandem mass spectra are triggered by multiple precursors which are difficult to

identify. Then we design a new scoring function to identify the co-eluted precursors. About

26% of all identified peptides were exclusively from co-eluted peptides. Therefore, accurately

determining monoisotopic peaks, including co-eluted precursors, can greatly increase peptide

identification rate.
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1 Introduction

Peptide identification has become a key technique in MS-

based proteomics [1, 2]. The main process is as follows:

protein samples are proteolytically digested into peptides

that are subsequently separated by liquid chromatography

(LC) and then dynamically selected for fragmentation by

mass spectrometers; the resultant MS/MS spectra are sear-

ched against a database to produce peptide-spectrum

matches (PSM). In a database search, the monoisotopic

mass and mass tolerance for a precursor can be used to

obtain candidate peptides. Thanks to modern technology,

precursor mass tolerance of part per million (ppm)-level can

be achieved in high-resolution mass spectrometers such as

the FT-ICR, Orbitrap, and orthogonal TOF instruments

[3–5], which can be used to directly reduce the number of

candidate peptides. In fact, dozens of candidate peptides can

be obtained with several ppm, while thousands of candidate

peptides will be obtained with several Daltons (Da). Unfor-

tunately, when the given precursor mass is not the mono-

isotopic one, the correct peptide will not fall in the precursor

mass window with ppm-level mass tolerance. Therefore,

accurate determination of monoisotopic masses for precur-

sors is important for peptide identification in high-resolu-

tion mass spectra.
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While it is basic, accurate determination of monoisotopic

masses is non-trivial. The main cause is the interference of

other peaks, which is common in mass spectra, because

noise peaks and co-eluted precursors are common in the

precursor isolation window [6]. In this case, incorrect

monoisotopic mass-to-charge ratios (m/z) or charge

states may be exported, which occurs in some software, e.g.

BioWorks. Furthermore, co-eluted precursors may

produce fragment ions in the corresponding MS/MS spectra

(mixed spectra) and could be identified in a database search,

if the monoisotopic peak of each co-eluted precursor

should also be exported. In short, the interference from

other peaks, including co-eluted precursors, should be

carefully treated in a determination method of monoisotopic

peaks.

For the purpose of determining monoisotopic peaks,

about four methods have been reported. Among them is the

well-known averagine model [7], in which an averaged

molecular formula is obtained from a protein database and

used to estimate the peptide molecular formula, and then

the distance between the experimental and the estimated

isotopic distribution is calculated to determine the mono-

isotopic mass. This idea is used in many software tools, e.g.

THRASH [8], Decon2LS [9], DeconMSn [10], Hardklor [11],

Bullseye [12], and DTASuperCharge [13]. Similar to the

averagine model, another method is based on the relation-

ship between the intensity ratio of adjacent isotopic peaks

and the peptide mass [14–16], in which the theoretical

relationship is obtained from a protein database, and then

the distance between the experimental and the theoretical

relationship is calculated to determine the monoisotopic

mass. Both methods determine the monoisotopic mass

based on a single MS scan, in which low-abundance

precursors are sometimes selected at the two ends of elution

profiles. This becomes problematic when these precursors

exhibit unusual isotopic distributions that are dissimilar to

the theoretical ones.

To overcome the disadvantage of low-abundance precur-

sors, many software tools consider the elution profile of a

peak over several MS scans, e.g. MaxQuant [17], Raw2MSM

[18], VIPER [19], Superhirn [20], MapQuand [21], msInspect

[22], Peplist [23], and MZmine [24], most of which are

described in the review [25]. However, the three types of

methods just mentioned (averagine model, intensity ratio,

and elution profile) seldom consider the interference of

other peaks. They export only one candidate monoisotopic

peak for each MS/MS spectrum. Therefore, they may miss

some correct monoisotopic peaks because of the inter-

ference of other peaks. The fourth method strives to include

the correct monoisotopic peaks by searching the MS/MS

spectra with a large precursor mass tolerance, e.g. 73.1 Da,

and filtering MS/MS spectra with a small precursor mass

tolerance, e.g. 710 ppm, in each local region that corre-

sponds to precursor mass errors of 0, 1, 2, and 3. When the

charge state of the precursor is incorrect, this strategy

will also miss the correct monoisotopic peaks. Furthermore,

co-eluted precursors are out of consideration in all of these

four methods.

Recently, several methods have tried to consider co-eluted

precursors. Some export the monoisotopic peaks of co-

eluted precursors separately in the isolation window for

identification, while the MS/MS spectrum is the same as the

original one [26–29]. Some exclude the fragment ions of the

first identified peptide from the MS/MS spectrum and use

the left fragment ions to identify the second peptide [30].

Some use the identification idea of cross-linked peptides to

identify mixed spectra [31]. Others use simulated mixed

spectra to study the influence of co-eluted precursors on

database and spectral library searches [32–34]. These meth-

ods have shown that mixed spectra are common but less

likely to result in accurate identification. Therefore, how to

identify mixed spectra effectively is still a problem.

In this paper, we propose a new method, named pParse,

to accurately determine the monoisotopic masses of

precursors. Because of the existence of co-eluted precursors,

pParse exports several probable monoisotopic peaks for

precursors. The key point is how to use the relationship

between the position of the highest peak and the mass of the

first peak to detect candidate clusters. To avoid enumerating

all possibilities, we extract three features for each cluster:

(i) the sum of the intensity, (ii) the similarity of the

experimental and the theoretical isotopic distribution, and

(iii) the similarity of elution profiles. pParse uses these

features to sort all possible monoisotopic peaks in the

precursor isolation window including the co-eluted precur-

sors. The top-ranked monoisotopic peaks are exported and

assigned to the corresponding MS/MS spectrum separately.

To improve the identification rate of mixed spectra, a new

scoring function is designed, which is similar to the iden-

tification of selected-reaction monitoring (SRM) data [35].

Concisely, we have achieved two improvements for deter-

mining monoisotopic peaks: the recall of correct mono-

isotopic peaks at high precision and the identification rate of

co-eluted precursors.

In the following section, we will introduce the workflow

of pParse and the scoring function for the identification of

co-eluted precursors. Then we will list some results of

improvements and discuss: (i) how to evaluate the correct-

ness of monoisotopic peaks, (ii) why there are incorrect

monoisotopic peaks exported, (iii) how to effectively identify

co-eluted precursors and what the influence of co-eluted

precursors is, (iv) what the difference between pParse

and BioWorks is, and (v) what the time and space cost of

pParse is.

2 Materials and methods

2.1 Methods

Because the instrument software may determine the

monoisotopic peak simply by the highest intensity, a more
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accurate method for determining monoisotopic peaks is

required after the raw data are produced. Our software tool,

pParse, acts as a post-data acquisition procedure to accu-

rately determine the monoisotopic peaks for precursors. The

flow chart for pParse, shown in Fig. 1, consists of three

major steps: (i) detecting candidate isotopic clusters in a

single MS scan, (ii) reconstructing elution profiles for each

candidate cluster, and (iii) determining monoisotopic peaks.

Each step is described below.

2.1.1 Detecting candidate isotopic clusters in a

single MS scan

In the precursor isolation window of the MS scan just

preceding an MS/MS scan, candidate isotopic clusters can

be detected by scanning peaks from low m/z to high m/z

with the assumed m/z interval. When the peak in the

isolation window has a low signal-to-noise ratio (S/N),

candidate clusters may not include the precursor originally

selected for the MS/MS scan. In this case, candidate clusters

need to be detected in MS scans before and after the current

MS scan (as shown in Fig. 1).

During the candidate detection step, the S/N is computed

for each peak to discard noise peaks. The distribution of the

peak intensity in the MS scan can be obtained. Then the

intensity with the highest frequency is defined as the noise

level, and the S/N for a peak is defined as the ratio of the

peak intensity to the noise level. MS peaks whose S/Ns are

o1 (below the noise level) will be discarded.

Two important criteria are then applied to detect candidate

clusters in the precursor isolation window. One is that adjacent

peaks in a candidate cluster should have a suitable m/z
difference, e.g. 1.0032 Da (the average value of the mass

difference of adjacent isotopic peaks obtained from pre-iden-

tified MS/MS spectra) divided by the assumed charge state of

the precursor ion, which ranges from 2 to 7. The other is that

the similarity of the experimental and the theoretical (by the

averagine model) isotopic distribution should satisfy given

conditions. For example, there are two conditions that must be

satisfied if only one candidate cluster is exported starting from

the first peak to the end peak. Those two conditions are: (i) the

first peak in the current cluster is the highest, and its mass is

o1800 Da and (ii) the similarity of the experimental and the

theoretical isotopic distribution is more than 0.99 (the

threshold can be obtained from pre-identified MS/MS spectra).

Otherwise, when the first condition is satisfied, but the second

is not satisfied, two candidate clusters are exported: one starts

from the first peak to the end peak; the other starts from the

second peak to the end peak.

In the second criterion, pParse considers the relationship

between the position of the highest peak and the mass of the

first peak, which is missed in other averagine model-based

methods. The relationship can be inferred from the aver-

agine model: when the peptide mass is o1800 Da, the first

peak is the highest; when the peptide mass is between 1800

and 3300 Da, the second peak is the highest. As a result, a

list of candidate clusters in the original precursor isolation

window can be obtained, including co-eluted precursors.

2.1.2 Reconstructing elution profiles for each

candidate cluster

For all peaks in each isotopic cluster, the elution profiles are

similar because all of the isotopic peaks are concomitant.

But a noise peak does not have an elution profile. Therefore,

elution profiles can be used to remove noise peaks. To

reconstruct the elution profiles, pParse starts from the MS

scan n from which an MS/MS scan is triggered, identifies

the peaks belonging to a candidate cluster, and then sear-

ches for matching peaks with mass deviations no more than

a pre-defined threshold in MS scans n�1 and n11. The

Determine
monoisotopic
peaks

Detect
candidate
clusters

Reconstruct
elution
profiles

Reconstruct elution profiles for candidate clusters

Begin

Detect candidate clusters after the current MS scan

Output monoisotopic m/z and charge for the MS/MS spectrum

Detect candidate clusters before the current MS scan

Use three features to rank candidate clusters

Candidate clusters include
the selected precursor

Detect candidate clusters in the current MS scan

End

Candidate clusters include
the selected precursor

Yes

No

Yes

No

Yes

No

The MS scan and m/z of a selected precursor

No more MS/MS

Figure 1. Flow chart of pParse. pParse has three main steps:

(a) detecting candidate isotopic clusters in a single MS scan,

(b) reconstructing elution profiles for each candidate cluster, and

(c) determining monoisotopic peaks by the rank of all clusters.

To detect candidate clusters, two factors are considered in each

cluster: (i) the relationship between the position of the highest

peak and the mass of the first peak and (ii) the similarity of the

experimental and the theoretical isotopic distribution. To rank all

clusters, three features can be extracted for each cluster: (i) the

sum of the intensity, (ii) the similarity of the experimental and

the theoretical isotopic distribution, and (iii) the similarity of

elution profiles.
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matching procedure continues to the neighboring MS scans in

both directions until no matching peak is found in two (or

other user-defined values) consecutive MS scans. Noise peaks

that cannot be assembled into elution profiles are filtered out.

For two adjacent peaks in a candidate cluster, the correlation

between their elution profiles is calculated using the cosine of

the angle between the vectors corresponding to the elution

profiles. The correlation of the first two peaks is defined as the

similarity of elution profiles in each isotopic cluster.

2.1.3 Determining monoisotopic peaks

After the elution profile’s reconstruction, three features can

be extracted: (i) the sum of the intensity for each cluster on

the current MS scan, (ii) the similarity of the experimental

and the theoretical isotopic distribution for each cluster, and

(iii) the similarity of elution profiles in each cluster. The

ranks of each feature are multiplied as the final scoring

function. The top k, e.g. 5, monoisotopic peaks are exported.

After the above three determinations are verified, the

MS/MS spectra are exported with all of the determined

precursor m/z values and charge states, while the fragment

ions are the same as the original ones. On the basis of the

algorithm, pParse is implemented using MATLAB and

Python. The user manual and the MATLAB source code of

pParse are provided in Supporting Information.

2.2 Mixed spectra identification

Mixed spectra are less likely to identify with common database

search engines [36–39] because some fragment ions of co-

eluted precursors may be low and not fragmented well. To

improve the identification rate of mixed spectra, the SRM

identification method can be used which uses only one

precursor and two fragment ions to identify a peptide [35].

Here, we use ppm mass tolerance to obtain dozens of candi-

date peptides. For each peptide we follow the steps: (i) calcu-

lating the theoretical fragment ions, (ii) counting the fragment

ion pairs which occur only in the current peptide (unique ion

signature, UIS) and the frequency of non-UIS fragment ions

which occur in all candidate peptides, (iii) matching the

theoretical fragment ions to the MS/MS spectrum, and (iv)

summing the matched intensity of UIS fragment ions and the

matched intensity of non-UIS fragment ions divided by their

frequency as the score (UIS score). Finally, the peptide of the

highest score is exported as the PSM result. To estimate the

false discovery rate (FDR), we also calculate the UIS score for

the reversed sequence of each candidate peptide [40].

2.3 Data sets

To demonstrate the benefit of pParse, we showed the

analysis of two published data sets with high precursor mass

accuracy. The first data set was generated from yeast

samples, referred to as Yeast data hereafter [41]. The second

data set was generated from HeLa cells, referred to as HeLa

data hereafter [42]. In the Yeast data, peptides were sepa-

rated with the LC-MS analysis. In the HeLa data, the

digested human cell samples were fractionated with

isoelectric focusing (IEF), followed by LC-MS analysis of

each fraction. The difference of these two data sets is the

separation method. If the samples are only separated by LC,

more mixed spectra will occur. If the samples are fractio-

nated with IEF or SDS-PAGE, less mixed spectra will occur

but still reach about 50%. The detailed information for these

two data sets is shown in Supporting Information Table 1.

3 Results and discussion

3.1 Evaluation for the correctness of monoisotopic

peaks

To evaluate the correctness of monoisotopic peaks, we

should first generate a confident test set of correct mono-

isotopic peaks. The central peak in the precursor isolation

window can be exported, which is recorded in the raw data.

Because the central peak may be the isotopic peak rather

than the monoisotopic peak, a large precursor mass toler-

ance, e.g. 73.1 Da, is used to search the exported MS/MS

spectra (the searching parameters are shown in Supporting

Information Table 2). In each local region that corresponds

to precursor mass errors of 0, 1, 2, and 3, search results are

filtered with a small precursor mass tolerance, e.g.

710 ppm, using the target-decoy strategy.

Second, we can use several kinds of software to export the

monoisotopic peaks, such as pParse, MaxQuant, and the

instrument software BioWorks (the exporting parameters

are shown in Supporting Information Table 3). For each

identified monoisotopic peak, we compare its m/z value and

charge state with the exported precursors. When the charge

states are the same and the difference of m/z values is no

more than 10 ppm, the exported precursor is correct, which

means the software exports the correct monoisotopic peak.

Otherwise, the exported precursor is incorrect.

Third, we sort the identified monoisotopic peaks by their

database search scores in a descending order. The higher

the database search score, the more reliable the mono-

isotopic peak. Therefore, we can calculate the two evaluation

measurements, precision and recall. Precision is calculated

by the number of correct precursors in the current set

divided by the size of the current set, e.g. the first k sorted

monoisotopic peaks. Recall is calculated by the number of

correct precursors in the current set divided by the number

of all identified monoisotopic peaks, which is the same

measurement as sensitivity.

The above three steps are used to evaluate the correctness

of the monoisotopic peak for the cluster of the central peak

in the precursor isolation window. To evaluate the correct-
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ness of all monoisotopic peaks in the precursor isolation

window, we should modify the first step above. In the

precursor isolation window, adjacent peaks with a suitable

m/z difference constitute a candidate cluster. All the peaks

in each candidate cluster are exported (by so called brute

force). A small precursor mass tolerance, e.g. 710 ppm, is

used to search the exported MS/MS spectra. Search results

are filtered by the target-decoy strategy. The second and

third steps remain the same as the steps above.

The evaluation results for the Yeast data and the HeLa data

are shown in Fig. 2. In Fig. 2, the search engine is pFind.

Actually, the evaluation approaches can be used with any

search engine. Supporting Information Fig. 1 repeats similar

results by MASCOT. Concisely, pParse is the most sensitive of

all cases, and the sensitivity on all identified monoisotopic

peaks reaches more than 98%. In the case of evaluating the

correctness of all monoisotopic peaks in the precursor isola-

tion window, the precision of pParse, MaxQuant, and

BioWorks was 99–99.1%, 88–93.2%, and 79.9–94.7% at the

same recall, and the recall of pParse, MaxQuant, and

BioWorks was 98–98.8%, 0.5–17%, and 1.8–36.5% at the same

precision (as shown in Table 1), because MaxQuant and

BioWorks do not export co-eluted precursors.

In the two cases of evaluating the correctness of mono-

isotopic peaks, there are still a few precursors exported by

pParse that are different from the identified monoisotopic

peaks. In fact, the identified monoisotopic peaks are

indeed incorrect, because the corresponding monoisotopic

peaks to the peptides are missing in the precursor

isolation window. After the deamidation modification is

considered, the peptides can be identified with this modifi-

cation and the corresponding monoisotopic peaks appear in

the precursor isolation window, which are the same as the

monoisotopic peaks exported by pParse. Checking the

identification in this way, it is found that 99% of the iden-

tified monoisotopic peaks are correct. Therefore, this

approach has proven suitable for evaluating the correctness

of monoisotopic peaks.

3.2 The reasons for exporting incorrect

monoisotopic peaks

After evaluation with the identified monoisotopic peaks, we

can find out some reasons for BioWorks and MaxQuant

exporting incorrect monoisotopic peaks. BioWorks has

shown a propensity for exporting incorrect monoisotopic

peaks in two cases (Supporting Information Fig. 2). The first

case is when the central peak is the highest in the cluster

(but not the first peak), the central peak is exported as the

monoisotopic peak; the second case is that when another

cluster appears before the central peak cluster with the same

m/z difference, one peak in the former cluster is exported as

the monoisotopic peak. The first case is the main cause,

because BioWorks seems to determine monoisotopic peaks

by the highest intensity rather than the isotopic distribution.

In five cases MaxQuant is easy to export incorrect mono-

isotopic peaks: (i) when co-eluted precursors occur, only one

monoisotopic peak is exported; (ii) when there is another

cluster before the central peak cluster with the same m/z
difference, one peak in the former cluster is exported as the

monoisotopic peak; (iii) when the central peak cluster has two

candidate charge states and the clusters of both charge states

have elution profiles, only one charge state is exported; (iv)

when there are two peaks close to the monoisotopic peak, the

mass deviation of the exported monoisotopic peak is a little

larger; (v) a few precursors are filtered out by MaxQuant. The

first four cases are shown in Supporting Information Fig. 3.

The first three cases are the main causes. The first two cases

occur because there are co-eluted precursors that need be

considered in monoisotopic peak detection. The third case

occurs because elution profile cannot distinguish them in the

isolation window, but the isotopic distribution can help.

In the fourth case of MaxQuant, pParse may also export

the monoisotopic peak with a little larger mass deviation,

because the monoisotopic peak has been interfered with a

Figure 2. Evaluation for the correctness of monoisotopic peaks.

Two evaluation approaches are designed in the text: (i) evalua-

tion for the correctness of the monoisotopic peaks for the central

peak clusters and (ii) evaluation for the correctness of all

monoisotopic peaks in the precursor isolation window. Points

(A) and (B) are the precision recall curves for the Yeast data,

while (C) and (D) are the precision recall curves for the HeLa

data. In four cases pParse is the most sensitive and the sensi-

tivity on all identified monoisotopic peaks reaches more than

98%.
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nearby peak. But pParse can deal well with other four cases

of MaxQuant and the two cases of BioWorks. Therefore,

pParse outperforms MaxQuant and BioWorks.

3.3 The identification and the influence of co-eluted

precursors

Using pParse we find that in all MS/MS spectra, the

proportion of mixed spectra (at least two precursors in the

isolation window) is 50–60%. Unfortunately, mixed spectra

are less likely to result in identification with common database

search engines, because some fragment ions for the co-eluted

precursors may be low and not fragmented well. For example,

using the search engine pFind we identified 5–8% of all co-

eluted precursors at the FDRr1%. Then we design a new

scoring function (UIS score) similar to the SRM identification.

To estimate the FDR, we also calculate the UIS score for the

reversed sequence of each candidate peptide. We searched the

Yeast data on E. coli database with UIS and found that the

ratio of the number of co-eluted precursors identified from

target and decoy peptides was 0.987:1, which means the

estimated FDR is higher than the real FDR. Therefore, we set

the FDRr5% for UIS. Furthermore, because with pFind the

ratio was 1.09:1, we set the FDRr1% for pFind.

In the Yeast data, UIS identified 1343 co-eluted precur-

sors as having the same peptides as pFind, and four co-

eluted precursors as having different peptides from pFind.

pFind identified 415 more co-eluted precursors which were

missed by UIS, and UIS identified 1781 more co-eluted

precursors which were missed by pFind (as shown in

Fig. 3). We checked the 1781 more co-eluted precursors and

found that 70% of them were the same top-one peptides

found by pFind which were filtered out by the FDRr1%.

After merging the results of UIS and pFind, 16% of all co-

eluted precursors were identified. Therefore, UIS can

improve the identification rate of co-eluted precursors.

A typical example of mixed spectrum is shown in Fig. 4.

Peptide A of the central peak cluster is identified both by

pFind and UIS. The co-eluted peptide B is only identified by

UIS. From the matched MS/MS spectrum, we know that

most of the fragment ions of peptide A are high and

consecutive, while only a few fragment ions of peptide B are

high or consecutive. Because pFind gives high weights to

consecutive ions, the score of peptide A is much higher than

that of peptide B. Thus, peptide A is easy to be identified by

pFind, but peptide B may be unidentified. Anyhow, there

are still a few high peaks that cannot be matched by peptide

A. When these few high peaks can only be matched with

peptide B, we can also identify peptide B. UIS uses the

uniqueness of two peak pairs to identify less consecutive

fragment ions. Therefore, the uniqueness of UIS

and the consecutiveness of pFind are complementary

and can be combined to improve the identification rate of

mixed spectra.

After the combinational identification of mixed spectra by

UIS and pFind, more peptides and proteins can be identi-

fied. The number of identified mixed spectra in the Yeast

data is shown in Table 2. In the Yeast data, 26.2% of all

identified peptides were exclusively from co-eluted peptides,

and 35.8% of all identified proteins were exclusively from co-

eluted peptides (one example shown in Fig. 5A). About 30%

of all identified proteins had been identified from the central

peak precursors and the coverage values were increased by

the co-eluted precursors (one example shown in Fig. 5B).

The detailed protein coverage of the Yeast data is shown in

Supporting Information, which shows that the average

protein coverage identified from the central peak precursors

was 18.8%, and the average protein coverage identified from

Table 1. Comparison of three software programs’ precision at the same recall and recall at the same precision to evaluate the correctness
of all monoisotopic peaks in the precursor isolation window

Precision of BioWorks (%) Precision of MaxQuant (%) Precision of pParse (%)

Recall of 79.9% in the Yeast data 79.9 88 99
Recall of 93.2% in the HeLa data 94.7 93.2 99.1

Recall of BioWorks (%) Recall of MaxQuant (%) Recall of pParse (%)
Precision of 98% in the Yeast data 1.8 17 98
Precision of 98.8% in the HeLa data 36.5 0.5 98.8

Figure 3. Venn diagram for the identified co-eluted precursors in

the Yeast data. The left smaller circle represents the number of

identified co-eluted precursors by pFind. The right larger circle

represents the number of identified co-eluted precursors by UIS.

UIS identified 1343 co-eluted precursors with the same peptides

as pFind, and four co-eluted precursors with different peptides

from those found by pFind. pFind identified 415 more co-eluted

precursors, and UIS identified 1781 more co-eluted precursors.
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the co-eluted precursors was 3.2%. Therefore, the detection

and identification of co-eluted precursors can increase the

number of identified proteins and protein coverage greatly.

3.4 Comparison of pParse with the instrument

software

Though the instrument software, BioWorks, can export

some correct monoisotopic peaks, there are still some cases

in which BioWorks exports incorrect monoisotopic peaks.

One way to resolve the problem is by searching MS/MS

spectra exported by BioWorks with a large precursor mass

tolerance and filtering MS/MS spectra with a small

precursor mass tolerance in each local region, e.g. 0, 1, 2,

and 3. In the Yeast data, this strategy identified 5356

peptides. Then we search the MS/MS spectra exported by

pParse with a small precursor mass tolerance. The second

strategy identified 7668 peptides. The overlapping of these

two strategies is 5339. The second strategy identified 2329

Figure 4. An example of an identified

mixed spectrum. (A) Two monoisotopic

peaks are determined in the precursor

isolation window: one is the central peak;

the other is the peak close to the left side

of the isolation window. (B) The peptide A

of the central peak precursor is matched

with the MS/MS spectrum. (C) The peptide

B of the co-eluted precursor is matched

with the MS/MS spectrum. Most of the

fragment ions of peptide A are high and

consecutive, while a few fragment ions of

peptide B are high or consecutive. Actu-

ally, peptide B is the top-one PSM in pFind,

but it is below the FDR threshold. UIS

gives peptide B a relatively high score and

identifies it. UIS and pFind can be

combined to give more reliable peptides.
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more peptides, and the first strategy identified only 17 more

peptides (as shown in Fig. 6). Two cases occur for these 17

peptides in pParse: (i) the mass deviation of the exported

monoisotopic peak is a little larger and (ii) there is a

deamidation modification. The 2329 peptides only identified

by pParse are mainly from co-eluted precursors. Therefore,

pParse outperforms BioWorks in determining monoisotopic

peaks.

3.5 The performance of pParse

In the precursor isolation window, adjacent peaks with a

suitable m/z difference constitute a candidate cluster. All the

peaks in each candidate cluster can be exported, which is the

so-called brute force. In this way, correct monoisotopic

peaks cannot be missed. We compared the exporting time

and the number of exported precursors for brute force,

pParse, MaxQuant, and BioWorks in the Yeast data. The

result is shown in Table 3. (All the programs were executed

on the same PC: Intel Core 2 Duo processor 2.66 GHz, 2 GB

RAM, Windows XP OS.) The exporting time of all four

ways is acceptable, while the difference is the sensitivity of

correct monoisotopic peaks and the number of exported

monoisotopic peaks. Because pParse considers the most

probable monoisotopic peaks and avoids brute force, the

sensitivity of pParse is similar to that of brute force. The

number of exported precursors of pParse is two times more

than that of BioWorks, while the number of exported

precursors of brute force is six times more than that of

BioWorks. Therefore, pParse reaches high sensitivity and

controls the number of exported precursors, whereas

sensitivity is much more important in monoisotopic peak

determination.
Table 2. The number of mixed spectra according to the number

of identified peptides in the Yeast data by UIS and pFind

Number of identified peptides in each MS/MS
spectra

2 3 4

Number of mixed spectra 1765 91 3

Figure 5. The influence of co-eluted precursors. Co-eluted

precursors can increase the protein coverage. In the Yeast data,

735 proteins were solely identified from co-eluted precursors

(e.g. A); 631 proteins had been identified from central peak

precursors and the coverage values were increased by co-eluted

precursors (e.g. B); 685 proteins were solely identified from

central peak precursors.

Figure 6. Venn diagram for the identified peptides in the Yeast

data. The left smaller circle represents the number of identified

peptides from BioWorks. The right larger circle represents the

number of identified peptides from pParse. The first strategy is

that MS/MS spectra are exported by BioWorks, searched with a

large precursor mass tolerance, and filtered with a small

precursor mass tolerance in each local region that corresponds

to precursor mass errors of 0, 1, 2, and 3. The second strategy is

that MS/MS spectra are exported by pParse and searched with a

small precursor mass tolerance.

Table 3. Comparison of the exporting time and the number of
exported precursors for brute force, pParse, MaxQuant,
and BioWorks in the Yeast data

Tools The exporting
time (min)

The number of
exported precursors

Brute force 33.8 237 452
pParse 33.7 88 419
MaxQuant 44.6 45 760
BioWorks 21.4 39 829
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4 Concluding remarks

Monoisotopic peak determination and co-eluted precursor

identification are challenges in interpreting mass spectra. In

this paper, we presented pParse, a new method to determine

the monoisotopic masses of precursors for MS/MS spectra.

Because pParse uses a new method to detect candidate

clusters and three important features to sort them, the

sensitivity of pParse reaches more than 98%. Though co-

eluted precursors are less likely to identify, we use the

uniqueness of UIS and the consecutiveness of pFind to

improve the identification rate of mixed spectra from 8 to

16%, and increase protein identification and coverage

greatly.

pParse is designed for Thermo FT/Orbitrap RAW files,

i.e. high-resolution RAW files for shotgun proteomics and is

not suitable for low-resolution RAW files. It is known that

other mass spectrometers also need to determine correct

monoisotopic peaks and detect co-eluted precursors.

Therefore, we will extend the algorithm of pParse to these

mass spectrometers as a future work.
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